Despite excellent performance in image generation, Generative Adversarial Networks (GANs) are notorious for its requirements of enormous storage and intensive computation. As an awesome ''performance maker'', knowledge distillation is demonstrated to be particularly efficacious in exploring low-priced GANs. In this paper, we investigate the irreplaceability of teacher discriminator and present an inventive discriminator-cooperated distillation, abbreviated as DCD, towards refining better feature maps from the generator. In contrast to conventional pixel-to-pixel match methods in feature map distillation, our DCD utilizes teacher discriminator as a transformation to drive intermediate results of the student generator to be perceptually close to corresponding outputs of the teacher generator. Furthermore, in order to mitigate mode collapse in GAN compression, we construct a collaborative adversarial training paradigm where the teacher discriminator is from scratch established to co-train with student generator in company with our DCD. Our DCD shows superior results compared with existing GAN compression methods. For instance, after reducing over 40x MACs and 80x parameters of CycleGAN, we well decrease FID metric from 61.53 to 48.24 while the current SoTA method merely has 51.92. This work's source code has been made accessible at https://github.com/poopit/DCD-official.
translated by 谷歌翻译
CutMix is a vital augmentation strategy that determines the performance and generalization ability of vision transformers (ViTs). However, the inconsistency between the mixed images and the corresponding labels harms its efficacy. Existing CutMix variants tackle this problem by generating more consistent mixed images or more precise mixed labels, but inevitably introduce heavy training overhead or require extra information, undermining ease of use. To this end, we propose an efficient and effective Self-Motivated image Mixing method (SMMix), which motivates both image and label enhancement by the model under training itself. Specifically, we propose a max-min attention region mixing approach that enriches the attention-focused objects in the mixed images. Then, we introduce a fine-grained label assignment technique that co-trains the output tokens of mixed images with fine-grained supervision. Moreover, we devise a novel feature consistency constraint to align features from mixed and unmixed images. Due to the subtle designs of the self-motivated paradigm, our SMMix is significant in its smaller training overhead and better performance than other CutMix variants. In particular, SMMix improves the accuracy of DeiT-T/S, CaiT-XXS-24/36, and PVT-T/S/M/L by more than +1% on ImageNet-1k. The generalization capability of our method is also demonstrated on downstream tasks and out-of-distribution datasets. Code of this project is available at https://github.com/ChenMnZ/SMMix.
translated by 谷歌翻译
This paper proposes a content relationship distillation (CRD) to tackle the over-parameterized generative adversarial networks (GANs) for the serviceability in cutting-edge devices. In contrast to traditional instance-level distillation, we design a novel GAN compression oriented knowledge by slicing the contents of teacher outputs into multiple fine-grained granularities, such as row/column strips (global information) and image patches (local information), modeling the relationships among them, such as pairwise distance and triplet-wise angle, and encouraging the student to capture these relationships within its output contents. Built upon our proposed content-level distillation, we also deploy an online teacher discriminator, which keeps updating when co-trained with the teacher generator and keeps freezing when co-trained with the student generator for better adversarial training. We perform extensive experiments on three benchmark datasets, the results of which show that our CRD reaches the most complexity reduction on GANs while obtaining the best performance in comparison with existing methods. For example, we reduce MACs of CycleGAN by around 40x and parameters by over 80x, meanwhile, 46.61 FIDs are obtained compared with these of 51.92 for the current state-of-the-art. Code of this project is available at https://github.com/TheKernelZ/CRD.
translated by 谷歌翻译
Most shadow removal methods rely on the invasion of training images associated with laborious and lavish shadow region annotations, leading to the increasing popularity of shadow image synthesis. However, the poor performance also stems from these synthesized images since they are often shadow-inauthentic and details-impaired. In this paper, we present a novel generation framework, referred to as HQSS, for high-quality pseudo shadow image synthesis. The given image is first decoupled into a shadow region identity and a non-shadow region identity. HQSS employs a shadow feature encoder and a generator to synthesize pseudo images. Specifically, the encoder extracts the shadow feature of a region identity which is then paired with another region identity to serve as the generator input to synthesize a pseudo image. The pseudo image is expected to have the shadow feature as its input shadow feature and as well as a real-like image detail as its input region identity. To fulfill this goal, we design three learning objectives. When the shadow feature and input region identity are from the same region identity, we propose a self-reconstruction loss that guides the generator to reconstruct an identical pseudo image as its input. When the shadow feature and input region identity are from different identities, we introduce an inter-reconstruction loss and a cycle-reconstruction loss to make sure that shadow characteristics and detail information can be well retained in the synthesized images. Our HQSS is observed to outperform the state-of-the-art methods on ISTD dataset, Video Shadow Removal dataset, and SRD dataset. The code is available at https://github.com/zysxmu/HQSS.
translated by 谷歌翻译
Generating molecules that bind to specific proteins is an important but challenging task in drug discovery. Previous works usually generate atoms in an auto-regressive way, where element types and 3D coordinates of atoms are generated one by one. However, in real-world molecular systems, the interactions among atoms in an entire molecule are global, leading to the energy function pair-coupled among atoms. With such energy-based consideration, the modeling of probability should be based on joint distributions, rather than sequentially conditional ones. Thus, the unnatural sequentially auto-regressive modeling of molecule generation is likely to violate the physical rules, thus resulting in poor properties of the generated molecules. In this work, a generative diffusion model for molecular 3D structures based on target proteins as contextual constraints is established, at a full-atom level in a non-autoregressive way. Given a designated 3D protein binding site, our model learns the generative process that denoises both element types and 3D coordinates of an entire molecule, with an equivariant network. Experimentally, the proposed method shows competitive performance compared with prevailing works in terms of high affinity with proteins and appropriate molecule sizes as well as other drug properties such as drug-likeness of the generated molecules.
translated by 谷歌翻译
Large language models (LLMs) show excellent performance but are compute- and memory-intensive. Quantization can reduce memory and accelerate inference. However, for LLMs beyond 100 billion parameters, existing methods cannot maintain accuracy or do not run efficiently on hardware. We propose SmoothQuant, a training-free, accuracy-preserving, and general-purpose post-training quantization (PTQ) solution to enable 8-bit weight, 8-bit activation (W8A8) quantization for LLMs that can be implemented efficiently. We observe that systematic outliers appear at fixed activation channels. Based on the fact that weights are easy to quantize while activations are not, SmoothQuant smooths the activation outliers by offline migrating the quantization difficulty from activations to weights with a mathematically equivalent transformation. SmoothQuant enables an INT8 quantization of both weights and activations for all the GEMMs in LLMs, including OPT-175B, BLOOM-176B, and GLM-130B. SmoothQuant has better hardware efficiency than existing techniques using mixed-precision activation quantization or weight-only quantization. We demonstrate up to 1.56x speedup and 2x memory reduction for LLMs with negligible loss in accuracy. Thanks to the hardware-friendly design, we integrate SmoothQuant into FasterTransformer, a state-of-the-art LLM serving framework, and achieve faster inference speed with half the number of GPUs compared to FP16. Our work offers a turn-key solution that reduces hardware costs and democratizes LLMs. Code is available at: https://github.com/mit-han-lab/smoothquant.
translated by 谷歌翻译
During image editing, existing deep generative models tend to re-synthesize the entire output from scratch, including the unedited regions. This leads to a significant waste of computation, especially for minor editing operations. In this work, we present Spatially Sparse Inference (SSI), a general-purpose technique that selectively performs computation for edited regions and accelerates various generative models, including both conditional GANs and diffusion models. Our key observation is that users tend to make gradual changes to the input image. This motivates us to cache and reuse the feature maps of the original image. Given an edited image, we sparsely apply the convolutional filters to the edited regions while reusing the cached features for the unedited regions. Based on our algorithm, we further propose Sparse Incremental Generative Engine (SIGE) to convert the computation reduction to latency reduction on off-the-shelf hardware. With 1.2%-area edited regions, our method reduces the computation of DDIM by 7.5$\times$ and GauGAN by 18$\times$ while preserving the visual fidelity. With SIGE, we accelerate the speed of DDIM by 3.0x on RTX 3090 and 6.6$\times$ on Apple M1 Pro CPU, and GauGAN by 4.2$\times$ on RTX 3090 and 14$\times$ on Apple M1 Pro CPU.
translated by 谷歌翻译
Video event extraction aims to detect salient events from a video and identify the arguments for each event as well as their semantic roles. Existing methods focus on capturing the overall visual scene of each frame, ignoring fine-grained argument-level information. Inspired by the definition of events as changes of states, we propose a novel framework to detect video events by tracking the changes in the visual states of all involved arguments, which are expected to provide the most informative evidence for the extraction of video events. In order to capture the visual state changes of arguments, we decompose them into changes in pixels within objects, displacements of objects, and interactions among multiple arguments. We further propose Object State Embedding, Object Motion-aware Embedding and Argument Interaction Embedding to encode and track these changes respectively. Experiments on various video event extraction tasks demonstrate significant improvements compared to state-of-the-art models. In particular, on verb classification, we achieve 3.49% absolute gains (19.53% relative gains) in F1@5 on Video Situation Recognition.
translated by 谷歌翻译
我们考虑在编码晶体材料的周期图上的表示形式学习。与常规图不同,周期图由最小单位单元组成,该单元在3D空间中的常规晶格上重复出现。如何有效编码这些周期结构会带来常规图表学习中不存在的独特挑战。除了E(3)不变外,周期性的图表表示还需要定期不变。也就是说,学到的表示形式应该不变,因为它们是人为强加的。此外,需要明确捕获周期性重复模式,因为不同尺寸和方向的晶格可能对应于不同的材料。在这项工作中,我们提出了一个变压器体系结构,称为Matformer,以进行周期性图表学习。我们的拟合器设计为周期性不变,可以明确捕获重复模式。特别是,Matformer通过有效使用相邻细胞中相同原子之间的几何距离来编码周期模式。多个通用基准数据集的实验结果表明,我们的配合器的表现始终超过基线方法。此外,我们的结果证明了定期不变性和对晶体表示学习的明确重复模式编码的重要性。
translated by 谷歌翻译
对具有代理商初始位置未知的有限3D环境的多代理探索是一个具有挑战性的问题。它需要快速探索环境,并坚定合并代理商构建的子图。我们认为现有方法是侵略性或保守的:在检测到重叠时,积极的策略合并了两种由不同代理构建的子图,这可能导致由于对重叠的错误阳性检测而导致不正确的合并,因此是如此。不健全。保守策略指导一个代理人在合并之前重新审视另一个代理商的过量验证历史轨迹,这可以降低由于对同一空间的反复探索而引起的勘探效率。为了巧妙地平衡子图合并和勘探效率的鲁棒性,我们为基于激光雷达的多代理探索开发了一种新方法,该方法可以指导一个代理商以\ emph {自适应}方式重复另一个代理商的轨迹子图合并过程的指标。此外,我们的方法通过计划合并子图的代理人共同计划,以进一步提高勘探效率,以\ emph {Cooperative}方式将最近的单格分层勘探策略扩展到多个代理。我们的实验表明,我们的方法平均比基线高出50 \%,同时稳固地合并子映射。
translated by 谷歌翻译