许多重要的集体决策问题可以被视为离散优化问题的多档版本。例如,参与式预算是背包问题的集体版本;其他示例包括集体调度和集体跨越树。对于每个问题,而不是开发特定模型,而不是开发特定模型,以及特定的算法技术,我们建议在统治与加权问题的统治聚合框架中表示和解决它们。我们基于将设定评分功能与运营商耦合,提供了集体离散优化(CDO)规则的模块化定义,我们展示了它们如何概括为特定CDO问题开发的几个现有程序。我们还基于整数线性编程(ILP)的实现,并在集体跨越树的问题上测试。
translated by 谷歌翻译
This paper revisits a fundamental problem in statistical inference from a non-asymptotic theoretical viewpoint $\unicode{x2013}$ the construction of confidence sets. We establish a finite-sample bound for the estimator, characterizing its asymptotic behavior in a non-asymptotic fashion. An important feature of our bound is that its dimension dependency is captured by the effective dimension $\unicode{x2013}$ the trace of the limiting sandwich covariance $\unicode{x2013}$ which can be much smaller than the parameter dimension in some regimes. We then illustrate how the bound can be used to obtain a confidence set whose shape is adapted to the optimization landscape induced by the loss function. Unlike previous works that rely heavily on the strong convexity of the loss function, we only assume the Hessian is lower bounded at optimum and allow it to gradually becomes degenerate. This property is formalized by the notion of generalized self-concordance which originated from convex optimization. Moreover, we demonstrate how the effective dimension can be estimated from data and characterize its estimation accuracy. We apply our results to maximum likelihood estimation with generalized linear models, score matching with exponential families, and hypothesis testing with Rao's score test.
translated by 谷歌翻译
Generative AI has matured to a point where large-scale models can generate text that seems indistinguishable from human-written text and remarkably photorealistic images. Automatically measuring how close the distribution of generated data is to the target real data distribution is a key step in diagnosing existing models and developing better models. We present MAUVE, a family of comparison measures between pairs of distributions such as those encountered in the generative modeling of text or images. These scores are statistical summaries of divergence frontiers capturing two types of errors in generative modeling. We explore four approaches to statistically estimate these scores: vector quantization, non-parametric estimation, classifier-based estimation, and parametric Gaussian approximations. We provide statistical bounds for the vector quantization approach. Empirically, we find that the proposed scores paired with a range of $f$-divergences and statistical estimation methods can quantify the gaps between the distributions of human-written text and those of modern neural language models by correlating with human judgments and identifying known properties of the generated texts. We conclude the paper by demonstrating its applications to other AI domains and discussing practical recommendations.
translated by 谷歌翻译
Kernels are efficient in representing nonlocal dependence and they are widely used to design operators between function spaces. Thus, learning kernels in operators from data is an inverse problem of general interest. Due to the nonlocal dependence, the inverse problem can be severely ill-posed with a data-dependent singular inversion operator. The Bayesian approach overcomes the ill-posedness through a non-degenerate prior. However, a fixed non-degenerate prior leads to a divergent posterior mean when the observation noise becomes small, if the data induces a perturbation in the eigenspace of zero eigenvalues of the inversion operator. We introduce a data-adaptive prior to achieve a stable posterior whose mean always has a small noise limit. The data-adaptive prior's covariance is the inversion operator with a hyper-parameter selected adaptive to data by the L-curve method. Furthermore, we provide a detailed analysis on the computational practice of the data-adaptive prior, and demonstrate it on Toeplitz matrices and integral operators. Numerical tests show that a fixed prior can lead to a divergent posterior mean in the presence of any of the four types of errors: discretization error, model error, partial observation and wrong noise assumption. In contrast, the data-adaptive prior always attains posterior means with small noise limits.
translated by 谷歌翻译
We present 3D Highlighter, a technique for localizing semantic regions on a mesh using text as input. A key feature of our system is the ability to interpret "out-of-domain" localizations. Our system demonstrates the ability to reason about where to place non-obviously related concepts on an input 3D shape, such as adding clothing to a bare 3D animal model. Our method contextualizes the text description using a neural field and colors the corresponding region of the shape using a probability-weighted blend. Our neural optimization is guided by a pre-trained CLIP encoder, which bypasses the need for any 3D datasets or 3D annotations. Thus, 3D Highlighter is highly flexible, general, and capable of producing localizations on a myriad of input shapes. Our code is publicly available at https://github.com/threedle/3DHighlighter.
translated by 谷歌翻译
Spectral risk objectives - also called $L$-risks - allow for learning systems to interpolate between optimizing average-case performance (as in empirical risk minimization) and worst-case performance on a task. We develop stochastic algorithms to optimize these quantities by characterizing their subdifferential and addressing challenges such as biasedness of subgradient estimates and non-smoothness of the objective. We show theoretically and experimentally that out-of-the-box approaches such as stochastic subgradient and dual averaging are hindered by bias and that our approach outperforms them.
translated by 谷歌翻译
The neuron reconstruction from raw Optical Microscopy (OM) image stacks is the basis of neuroscience. Manual annotation and semi-automatic neuron tracing algorithms are time-consuming and inefficient. Existing deep learning neuron reconstruction methods, although demonstrating exemplary performance, greatly demand complex rule-based components. Therefore, a crucial challenge is designing an end-to-end neuron reconstruction method that makes the overall framework simpler and model training easier. We propose a Neuron Reconstruction Transformer (NRTR) that, discarding the complex rule-based components, views neuron reconstruction as a direct set-prediction problem. To the best of our knowledge, NRTR is the first image-to-set deep learning model for end-to-end neuron reconstruction. In experiments using the BigNeuron and VISoR-40 datasets, NRTR achieves excellent neuron reconstruction results for comprehensive benchmarks and outperforms competitive baselines. Results of extensive experiments indicate that NRTR is effective at showing that neuron reconstruction is viewed as a set-prediction problem, which makes end-to-end model training available.
translated by 谷歌翻译
Influence diagnostics such as influence functions and approximate maximum influence perturbations are popular in machine learning and in AI domain applications. Influence diagnostics are powerful statistical tools to identify influential datapoints or subsets of datapoints. We establish finite-sample statistical bounds, as well as computational complexity bounds, for influence functions and approximate maximum influence perturbations using efficient inverse-Hessian-vector product implementations. We illustrate our results with generalized linear models and large attention based models on synthetic and real data.
translated by 谷歌翻译
Current pre-trained language models have enabled remarkable improvements in downstream tasks, but it remains difficult to distinguish effects of statistical correlation from more systematic logical reasoning grounded on understanding of the real world. In this paper we tease these factors apart by leveraging counterfactual conditionals, which force language models to predict unusual consequences based on hypothetical propositions. We introduce a set of tests drawn from psycholinguistic experiments, as well as larger-scale controlled datasets, to probe counterfactual predictions from a variety of popular pre-trained language models. We find that models are consistently able to override real-world knowledge in counterfactual scenarios, and that this effect is more robust in case of stronger baseline world knowledge -- however, we also find that for most models this effect appears largely to be driven by simple lexical cues. When we mitigate effects of both world knowledge and lexical cues to test knowledge of linguistic nuances of counterfactuals, we find that only GPT-3 shows sensitivity to these nuances, though this sensitivity is also non-trivially impacted by lexical associative factors.
translated by 谷歌翻译
Clustering analysis of sequence data continues to address many applications in engineering design, aided with the rapid growth of machine learning in applied science. This paper presents an unsupervised machine learning algorithm to extract defining characteristics of earthquake ground-motion records, also called latent features, to aid in ground-motion clustering and selection. In this context, a latent feature is a low dimensional machine-discovered spectral characteristic learned through nonlinear relationships of a neural network autoencoder. Clustering can be performed on the latent features and used to select a representative archetypal subgroup from a large ground-motion suite. The objective of efficient ground-motion selection is to choose records representative of what the structure will probabilistically experience in its lifetime. Three examples are presented to validate this approach, including a synthetic spectral dataset and spectra from field recorded ground-motion records. Deep embedding clustering of ground motion spectra improves on the results of static feature extraction, utilizing characteristics that represent the sparse spectral content of ground motions.
translated by 谷歌翻译