We report a method to convert discrete representations of molecules to and from a multidimensional continuous representation. This model allows us to generate new molecules for efficient exploration and optimization through open-ended spaces of chemical compounds.
translated by 谷歌翻译
持续学习的现有工作(CL)的重点是减轻灾难性遗忘,即学习新任务时过去任务的模型绩效恶化。但是,CL系统的训练效率不足,这限制了CL系统在资源有限的方案下的现实应用。在这项工作中,我们提出了一个名为“稀疏持续学习”(SPARCL)的新颖框架,这是第一个利用稀疏性以使边缘设备上具有成本效益的持续学习的研究。 SPARCL通过三个方面的协同作用来实现训练加速度和准确性保护:体重稀疏性,数据效率和梯度稀疏性。具体而言,我们建议在整个CL过程中学习一个稀疏网络,动态数据删除(DDR),以删除信息较少的培训数据和动态梯度掩盖(DGM),以稀疏梯度更新。他们每个人不仅提高了效率,而且进一步减轻了灾难性的遗忘。 SPARCL始终提高现有最新CL方法(SOTA)CL方法的训练效率最多减少了训练失败,而且令人惊讶的是,SOTA的准确性最多最多提高了1.7%。 SPARCL还优于通过将SOTA稀疏训练方法适应CL设置的效率和准确性获得的竞争基线。我们还评估了SPARCL在真实手机上的有效性,进一步表明了我们方法的实际潜力。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
生物医学文献中的自动关系提取(RE)对于研究和现实世界中的许多下游文本挖掘应用至关重要。但是,用于生物医学的大多数现有基准测试数据集仅关注句子级别的单一类型(例如蛋白质 - 蛋白质相互作用)的关系,从而极大地限制了生物医学中RE系统的开发。在这项工作中,我们首先审查了常用的名称实体识别(NER)和RE数据集。然后,我们提出了Biored,这是一种具有多种实体类型(例如,基因/蛋白质,疾病,化学)和关系对(例如,基因 - 疾病;化学化学化学化学)的首个生物医学RE语料库,在文档水平上,在一组600个PubMed摘要中。此外,我们将每个关系标记为描述一种新颖的发现或先前已知的背景知识,使自动化算法能够区分新颖和背景信息。我们通过基准在NER和RE任务上对几种现有的最新方法(包括基于BERT的模型)进行基准测试来评估Biored的实用性。我们的结果表明,尽管现有方法可以在NER任务上达到高性能(F-评分为89.3%),但重新任务的改进空间很大,尤其是在提取新颖的关系时(F-评分为47.7%)。我们的实验还表明,如此丰富的数据集可以成功地促进生物医学更准确,高效和健壮的RE系统的开发。 Biored数据集和注释指南可在https://ftp.ncbi.nlm.nih.gov/pub/lu/biored/中免费获得。
translated by 谷歌翻译
Systemic Lupus红斑(SLE)是一种罕见的自身免疫疾病,其特征是令人无法预测的耀斑和缓解的速度,具有不同的表现形式。狼疮性肾炎,SLE用于器官损伤和死亡率的主要疾病表现之一,是卢布斯分类标准的关键组成部分。因此,准确地鉴定电子健康记录(EHRS)中的狼疮性肾炎将使大型队列观察研究和临床试验有益于患者人口的表征对于招聘,研究设计和分析至关重要。可以通过程序代码和结构化数据来认可狼疮肾炎,例如实验室测试。然而,记录狼疮肾炎的其他关键信息,例如来自肾脏活检和先前的医学史叙事的组织学报告,需要复杂的文本处理,以从病理报告和临床笔记中挖掘信息。在这项研究中,我们开发了使用EHR数据识别鉴定狼疮肾炎的血管肾炎,而不使用自然语言处理(NLP)。我们开发了四种算法:仅使用结构化数据(基线算法)和使用不同NLP模型的三种算法的规则的算法。这三种NLP模型基于正则化逻辑回归,并使用不同的特征集,包括积极提及概念独特标识符(Cue),耐备的外观数量,以及三个部件的混合物。基线算法和最佳执行的NLP算法在Vanderbilt University Center(VUMC)的数据集上验证了外部验证。我们最佳地执行来自结构化数据,正则表达式概念和映射的特征的NLP模型,与基线狼疮性肾炎算法相比,在NMEDW(0.41 VS 0.79)和VUMC(0.62 VS 0.96)数据集中有所改善。
translated by 谷歌翻译
数据增强是自然语言处理(NLP)模型的鲁棒性评估的重要组成部分,以及增强他们培训的数据的多样性。在本文中,我们呈现NL-Cogmenter,这是一种新的参与式Python的自然语言增强框架,它支持创建两个转换(对数据的修改)和过滤器(根据特定功能的数据拆分)。我们描述了框架和初始的117个变换和23个过滤器,用于各种自然语言任务。我们通过使用其几个转换来分析流行自然语言模型的鲁棒性来证明NL-Upmenter的功效。基础架构,Datacards和稳健性分析结果在NL-Augmenter存储库上公开可用(\ url {https://github.com/gem-benchmark/nl-augmenter})。
translated by 谷歌翻译
脑转移性疾病的治疗决策依赖于主要器官位点的知识,目前用活组织检查和组织学进行。在这里,我们开发了一种具有全脑MRI数据的准确非侵入性数字组织学的新型深度学习方法。我们的IRB批准的单网回顾性研究由患者(n = 1,399)组成,提及MRI治疗规划和伽马刀放射牢房超过19年。对比增强的T1加权和T2加权流体减毒的反转恢复脑MRI考试(n = 1,582)被预处理,并输入肿瘤细分,模态转移和主要部位分类的建议深度学习工作流程为五个课程之一(肺,乳腺,黑色素瘤,肾等)。十倍的交叉验证产生的总体AUC为0.947(95%CI:0.938,0.955),肺类AUC,0.899(95%CI:0.884,0.915),乳房类AUC为0.990(95%CI:0.983,0.997) ,黑色素瘤ACAC为0.882(95%CI:0.858,0.906),肾类AUC为0.870(95%CI:0.823,0.918),以及0.885的其他AUC(95%CI:0.843,0.949)。这些数据确定全脑成像特征是判别的,以便准确诊断恶性肿瘤的主要器官位点。我们的端到端深度射出方法具有巨大的分类来自全脑MRI图像的转移性肿瘤类型。进一步的细化可以提供一种无价的临床工具,以加快对精密治疗和改进的结果的原发性癌症现场鉴定。
translated by 谷歌翻译
我们总结了使用巨大的自动语音识别(ASR)模型的大量努力的结果,该模型使用包含大约一百万小时音频的大型,多样的未标记数据集进行了预训练。我们发现,即使对于拥有数万个小时的标记数据的非常大的任务,预训练,自我培训和扩大模型大小的组合也大大提高了数据效率。特别是,在具有34K小时标记数据的ASR任务上,通过微调80亿个参数预先训练的构象异构体模型,我们可以匹配最先进的(SOTA)性能(SOTA)的性能,只有3%的培训数据和通过完整的训练集可以显着改善SOTA。我们还报告了从使用大型预训练和自我训练的模型来完成一系列下游任务所获得的普遍利益,这些任务涵盖了广泛的语音域,并涵盖了多个数据集大小的大小,包括在许多人中获得SOTA性能公共基准。此外,我们利用预先训练的网络的学会表示,在非ASR任务上实现SOTA结果。
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译