人类广泛利用视觉和触摸作为互补的感官,视觉提供有关场景的全球信息,并在操纵过程中触摸当地信息而不会受到阻塞。在这项工作中,我们提出了一个新颖的框架,用于以一种自我监督的方式学习多任务视觉执行表示。我们设计了一种机制,该机制使机器人能够自主收集空间对齐的视觉和触觉数据,这是下游任务的关键属性。然后,我们使用交叉模式对比损失训练视觉和触觉编码器将这些配对的感觉输入嵌入共享潜在空间中。对学习的表示形式进行评估,而无需对5个感知和控制任务进行微调,涉及可变形表面:触觉分类,接触定位,异常检测(例如,手术幻影肿瘤触诊),触觉搜索,例如,视觉疑问(例如,在遮挡的情况下,都可以从视觉询问中进行触觉搜索),以及沿布边缘和电缆的触觉伺服。博学的表示形式在毛巾功能分类上达到了80%的成功率,手术材料中异常检测的平均成功率为73%,视觉引导触觉搜索的平均成功率和87.8%的平均伺服距离沿电缆和服装的平均伺服距离为87.8%。接缝。这些结果表明,学习的表示形式的灵活性,并朝着对机器人控制的任务不合时宜的视觉表达表示迈出了一步。
translated by 谷歌翻译
电缆在许多环境中无处不在,但容易出现自我闭合和结,使它们难以感知和操纵。挑战通常会随着电缆长度而增加:长电缆需要更复杂的松弛管理和策略,以促进可观察性和可及性。在本文中,我们专注于使用双边机器人自动弄清长达3米的电缆。我们开发了新的运动原语,以有效地解开长电缆和专门用于此任务的新型Gripper Jaws。我们提出了缠结操作(SGTM)的滑动和抓握,该算法将这些原始物与RGBD视觉构成迭代性毫无障碍。SGTM在隔离的外手上取消了67%的成功率,图8节和更复杂的配置上的50%。可以在https://sites.google.com/view/rss-2022-untangling/home上找到补充材料,可视化和视频。
translated by 谷歌翻译
堆叠提高了架子上的存储效率,但是缺乏可见性和可访问性使机器人难以揭示和提取目标对象的机械搜索问题。在本文中,我们将横向访问机械搜索问题扩展到带有堆叠项目的架子,并引入了两种新颖的政策 - 堆叠场景(DARSS)和Monte Carlo Tree搜索堆叠场景(MCTSSS)的分配区域减少 - 使用Destacking和恢复行动。 MCTSS通过在每个潜在行动后考虑未来的状态来改善先前的LookAhead政策。在1200次模拟和18个物理试验中进行的实验,配备了刀片和吸力杯,这表明命令和重新攻击动作可以揭示目标对象的模拟成功率为82---100%,而在物理实验中获得了66----100%对于搜索密集包装的架子至关重要。在仿真实验中,这两种策略的表现都优于基线,并获得相似的成功率,但与具有完整状态信息的Oracle政策相比采取了更多步骤。在模拟和物理实验中,DARS在中位数步骤中的表现优于MCTSS,以揭示目标,但是MCTSS在物理实验中的成功率更高,表明对感知噪声的稳健性。请参阅https://sites.google.com/berkeley.edu/stax-ray,以获取补充材料。
translated by 谷歌翻译
最近的工作表明,2臂“ Fling”运动对于服装平滑可能是有效的。我们考虑单臂弹性运动。与几乎不需要机器人轨迹参数调整的2臂fling运动不同,单臂fling运动对轨迹参数很敏感。我们考虑一个单一的6多机器人臂,该机器人臂学习跨越轨迹以实现高衣覆盖率。给定服装抓握点,机器人在物理实验中探索了不同的参数化fling轨迹。为了提高学习效率,我们提出了一种粗到精细的学习方法,该方法首先使用多军匪徒(MAB)框架有效地找到候选动作,然后通过连续优化方法来完善。此外,我们提出了基于Fling Fall结果不确定性的新颖培训和执行时间停止标准。与基线相比,我们表明所提出的方法显着加速学习。此外,由于通过自学人员收集的类似服装的先前经验,新服装的MAB学习时间最多减少了87%。我们评估了6种服装类型:毛巾,T恤,长袖衬衫,礼服,汗衫和牛仔裤。结果表明,使用先前的经验,机器人需要30分钟以下的时间才能为达到60-94%覆盖率的新型服装学习一项动作。
translated by 谷歌翻译
架子通常用于将物体存储在房屋,商店和仓库中。我们制定了最佳架子布置(OSA)的问题,该目标是优化货架上对象的排列,以便在每个对象的访问频率和移动成本下,以获取访问时间。我们提出了一个混合企业计划(MIP)OSA-MIP,表明它在某些条件下找到了OSA的最佳解决方案,并在其一般成本设置中为其次优的解决方案提供了界限。我们在分析上表征了存在的必要且充分的架子密度条件,因此可以在不从架子上删除物体的情况下检索任何对象。来自1,575架模拟货架试验的实验数据和配备有推动刀片和吸入抓握工具的物理fetch机器人的54次试验表明,安排对象可以最佳地将预期的检索成本降低60-80%,以降低预期的搜索和预期的搜索在部分观察到的配置中,成本增加了50-70%,同时将搜索成功率提高到最高2倍。
translated by 谷歌翻译
我们考虑了一个新的问题,其中多个刚性凸的多边形物体位于从顶部摄像机可见的平面表面上随机放置的位置和方向。目的是使用多对象的按钮有效地将所有对象掌握到垃圾箱中,其中将多个对象推在一起以促进多对象抓握。我们为无摩擦的多对象推格程序提供了必要的条件,并将其应用于新颖的多对象抓紧计划器中的不可接受的grasps。我们发现我们的计划者比Mujoco模拟器基线快19倍。我们还提出了一种使用单对象和多对象抓取对象的选择算法。在将性能与单对象拾取基线进行比较的物理抓握实验中,我们发现无摩擦的多对象握把系统获得了13.6 \%的掌握成功,并且更快的速度为59.9 \%,从212 pph到340 pph。有关视频和代码,请参见\ url {https://sites.google.com/view/multi-object-grasping}。
translated by 谷歌翻译
机器人外科助理(RSAs)通常用于通过专家外科医生进行微创手术。然而,长期以来充满了乏味和重复的任务,如缝合可以导致外科医生疲劳,激励缝合的自动化。随着薄反射针的视觉跟踪极具挑战性,在未反射对比涂料的情况下修改了针。作为朝向无修改针的缝合子任务自动化的步骤,我们提出了休斯顿:切换未经修改,外科手术,工具障碍针,一个问题和算法,它使用学习的主动传感策略与立体声相机本地化并对齐针头进入另一臂的可见和可访问的姿势。为了补偿机器人定位和针头感知误差,然后算法执行使用多个摄像机的高精度抓握运动。在使用Da Vinci研究套件(DVRK)的物理实验中,休斯顿成功通过了96.7%的成功率,并且能够在故障前平均地在臂32.4倍之间顺序地执行切换。在培训中看不见的针头,休斯顿实现了75-92.9%的成功率。据我们所知,这项工作是第一个研究未修改的手术针的切换。查看https://tinyurl.com/huston-surgery用于额外​​的材料。
translated by 谷歌翻译
以前的工作定义了探索性抓握,其中一个机器人迭代地抓住并丢弃一个未知的复杂多面体物体,以发现一组稳定的掌握对象的每个识别的不同稳定的姿势。最近的工作用来了一个多武装强盗模型,每种姿势一小组候选麦克风;但是,对于具有少数成功Grasps的物体,该组可能不包括最强大的掌握。我们展示了学习高效的掌握装置(腿),这是一种算法,可以通过构建大型有希望的掌握的小型活跃的掌握,并使用学习的信心范围来确定何时何时置信,它可以停止探索对象。实验表明,腿可以比不学习活动集的现有算法更有效地识别高质量的掌握。在仿真实验中,我们测量腿部和基线所识别的最佳掌握的成功概率与真正最强大的掌握的最佳差距。经过3000个探索步骤后,腿部优于14个Dex-Net对手的10个中的基线算法和39 egad的25个!对象。然后,我们开发一个自我监督的掌握系统,机器人探讨了人类干预最小的掌握。 3对象的物理实验表明,腿将从基线收敛到高性能的GRASPS比基线更快。有关补充材料和视频,请参阅\ url {https://sites.google.com/view/legs-exp-grasping}。
translated by 谷歌翻译
使用单个参数化动态动作操纵可变形物体对蝇钓,宽毯和播放洗牌板等任务非常有用。此类任务作为输入所需的最终状态并输出一个参数化的开环动态机器人动作,它向最终状态产生轨迹。这对于具有涉及摩擦力的复杂动态的长地平轨迹尤其具有挑战性。本文探讨了平面机器人铸造的任务(PRC):其中握住电缆一端的机器人手腕的一个平面运动使另一端朝向所需的目标滑过平面。 PRC允许电缆达到机器人工作区以外的点,并在家庭,仓库和工厂中具有电缆管理的应用。为了有效地学习给定电缆的PRC策略,我们提出了Real2Sim2Real,一个自动收集物理轨迹示例的自我监督框架,以使用差分演进调谐动态模拟器的参数,生成许多模拟示例,然后使用加权学习策略模拟和物理数据的组合。我们使用三种模拟器,ISAAC健身房分段,ISAAC健身房 - 混合动力和Pybullet,两个功能近似器,高斯工艺和神经网络(NNS),以及具有不同刚度,扭转和摩擦的三个电缆。结果每条电缆的16个举出的测试目标表明,使用ISAAC健身房分段的NN PRC策略达到中位误差距离(电缆长度的百分比),范围为8%至14%,表现优于真实或仅培训的基线和政策。只有模拟的例子。 https://tinyurl.com/robotcast可以使用代码,数据和视频。
translated by 谷歌翻译
了解强化学习(RL)代理的新兴行为可能很困难,因为这种代理通常使用高度复杂的决策程序在复杂的环境中进行训练。这引起了RL中解释性的多种方法,旨在调和可能在主体行为与观察者预期的行为之间产生的差异。最近的方法取决于域知识,这可能并非总是可用的,分析代理商的策略,或者是对基础环境的特定要素的分析,通常被建模为马尔可夫决策过程(MDP)。我们的主要主张是,即使基本的MDP尚不完全了解(例如,尚未准确地了解过渡概率),也没有由代理商维护(即,在使用无模型方法时),但仍可以利用它为自动生成解释。为此,我们建议使用以前在文献中使用的正式MDP抽象和转换来加快寻找最佳策略的搜索,以自动产生解释。由于这种转换通常基于环境的符号表示,因此它们可能代表了预期和实际代理行为之间差距的有意义的解释。我们正式定义了这个问题,建议一类可用于解释新兴行为的转换,并提出了有效搜索解释的方法。我们演示了一组标准基准测试的方法。
translated by 谷歌翻译