The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Purpose: The aim of this study was to demonstrate the utility of unsupervised domain adaptation (UDA) in automated knee osteoarthritis (OA) phenotype classification using a small dataset (n=50). Materials and Methods: For this retrospective study, we collected 3,166 three-dimensional (3D) double-echo steady-state magnetic resonance (MR) images from the Osteoarthritis Initiative dataset and 50 3D turbo/fast spin-echo MR images from our institute (in 2020 and 2021) as the source and target datasets, respectively. For each patient, the degree of knee OA was initially graded according to the MRI Osteoarthritis Knee Score (MOAKS) before being converted to binary OA phenotype labels. The proposed UDA pipeline included (a) pre-processing, which involved automatic segmentation and region-of-interest cropping; (b) source classifier training, which involved pre-training phenotype classifiers on the source dataset; (c) target encoder adaptation, which involved unsupervised adaption of the source encoder to the target encoder and (d) target classifier validation, which involved statistical analysis of the target classification performance evaluated by the area under the receiver operating characteristic curve (AUROC), sensitivity, specificity and accuracy. Additionally, a classifier was trained without UDA for comparison. Results: The target classifier trained with UDA achieved improved AUROC, sensitivity, specificity and accuracy for both knee OA phenotypes compared with the classifier trained without UDA. Conclusion: The proposed UDA approach improves the performance of automated knee OA phenotype classification for small target datasets by utilising a large, high-quality source dataset for training. The results successfully demonstrated the advantages of the UDA approach in classification on small datasets.
translated by 谷歌翻译
我们挑战AI模型,以“展示”对《纽约客》标题比赛的复杂多模式幽默的理解。具体而言,我们开发了三个精心限制的任务,以掌握图像和标题之间的潜在复杂和意外的关系,并且对人类经验的广泛品种产生了复杂和意外的寓意;这些是纽约口径卡通的标志。我们调查了直接将卡通像素和字幕输入的视觉和语言模型,以及仅通过提供图像的文本描述来规避图像处理的仅限语言模型。即使我们为卡通图像提供了丰富的多方面注释,我们也可以确定高质量的机器学习模型(例如,微调,175b参数语言模型)和人类之间的性能差距。我们公开发布我们的语料库,包括描述图像的位置/实体的注释,场景的不寻常以及对笑话的解释。
translated by 谷歌翻译
黑盒机器学习模型被批评为缺乏可解释性,尽管它们往往具有良好的预测准确性。知识蒸馏(KD)是一种新兴工具,可以通过将知识提炼成透明模型来解释黑框模型。具有众所周知的解释优势,决策树是透明模型的竞争候选者。但是,对KD过程产生的决策树的理论或经验理解是有限的。在本文中,我们将这种决策树命名为蒸馏决策树(DDT),并为树结构稳定性的理论基础奠定了决定DDT解释的有效性的理论基础。我们证明,在某些温和的假设下,DDT的结构可以实现稳定(收敛性)。同时,我们开发了用于稳定DDT诱导的算法,提出了提高算法的计算效率的并行策略,并引入了一种边缘主体组件分析方法来克服采样中维度的诅咒。模拟和真实的数据研究证明了我们的理论结果,验证算法的疗效,并证明DDT可以在模型的预测准确性和可解释性之间取得良好的平衡。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
AI正在经历范式转变,随着模型的兴起(例如Bert,Dall-E,GPT-3),这些模型经过大规模的数据训练,并且可以适应广泛的下游任务。我们称这些模型基础模型来强调其至关重要但不完整的特征。该报告提供了基础模型的机会和风险的详尽说明,包括其功能(例如语言,愿景,机器人技术,推理,人类互动)和技术原则(例如,模型架构,培训程序,数据,系统,安全,安全性,评估,理论)对其应用(例如法律,医疗保健,教育)和社会影响(例如不平等,滥用,经济和环境影响,法律和道德考虑)。尽管基础模型基于标准的深度学习和转移学习,但它们的规模导致了新的新兴能力,以及它们在许多任务中的有效性都激发了同质化。同质化提供了强大的杠杆作用,但要求谨慎,因为基础模型的缺陷均由下游的所有适应模型继承。尽管即将广泛地部署基础模型,但我们目前对它们的工作方式,失败以及由于其新兴属性的影响而缺乏清晰的了解。为了解决这些问题,我们认为基础模型的许多批判性研究都需要与他们的基本社会技术性质相称。
translated by 谷歌翻译
我们研究目标不当,这是强化学习(RL)中分布的概括失败。当RL代理商保留其功能过失但追求错误的目标时,就会发生目标失败失败。例如,代理商可能会继续有能力避免障碍,但要导航到错误的地方。相比之下,以前的工作通常集中在能力概括性失败上,因为代理在测试时间无法做任何明智的事情。我们将能力和目标泛化之间的这种区别形式化,提供了目标不当的第一个经验证明,并呈现了其原因的部分特征。
translated by 谷歌翻译
Pennylane是用于量子计算机可区分编程的Python 3软件框架。该库为近期量子计算设备提供了统一的体系结构,支持量子和连续变化的范例。 Pennylane的核心特征是能够以与经典技术(例如反向传播)兼容的方式来计算变异量子电路的梯度。因此,Pennylane扩展了在优化和机器学习中常见的自动分化算法,以包括量子和混合计算。插件系统使该框架与任何基于门的量子模拟器或硬件兼容。我们为硬件提供商提供插件,包括Xanadu Cloud,Amazon Braket和IBM Quantum,允许Pennylane优化在公开访问的量子设备上运行。在古典方面,Pennylane与加速的机器学习库(例如Tensorflow,Pytorch,Jax和Autograd)接口。 Pennylane可用于优化变分的量子本素体,量子近似优化,量子机学习模型和许多其他应用。
translated by 谷歌翻译
Traditionally, data analysis and theory have been viewed as separate disciplines, each feeding into fundamentally different types of models. Modern deep learning technology is beginning to unify these two disciplines and will produce a new class of predictively powerful space weather models that combine the physical insights gained by data and theory. We call on NASA to invest in the research and infrastructure necessary for the heliophysics' community to take advantage of these advances.
translated by 谷歌翻译
Regularising the parameter matrices of neural networks is ubiquitous in training deep models. Typical regularisation approaches suggest initialising weights using small random values, and to penalise weights to promote sparsity. However, these widely used techniques may be less effective in certain scenarios. Here, we study the Koopman autoencoder model which includes an encoder, a Koopman operator layer, and a decoder. These models have been designed and dedicated to tackle physics-related problems with interpretable dynamics and an ability to incorporate physics-related constraints. However, the majority of existing work employs standard regularisation practices. In our work, we take a step toward augmenting Koopman autoencoders with initialisation and penalty schemes tailored for physics-related settings. Specifically, we propose the "eigeninit" initialisation scheme that samples initial Koopman operators from specific eigenvalue distributions. In addition, we suggest the "eigenloss" penalty scheme that penalises the eigenvalues of the Koopman operator during training. We demonstrate the utility of these schemes on two synthetic data sets: a driven pendulum and flow past a cylinder; and two real-world problems: ocean surface temperatures and cyclone wind fields. We find on these datasets that eigenloss and eigeninit improves the convergence rate by up to a factor of 5, and that they reduce the cumulative long-term prediction error by up to a factor of 3. Such a finding points to the utility of incorporating similar schemes as an inductive bias in other physics-related deep learning approaches.
translated by 谷歌翻译