成像表明临床前和人类肿瘤是异质性的,即单个肿瘤可以表现出多个区域,在正常发育过程中均表现出不同的行为,也可以反应治疗。在对照组肿瘤中观察到的大变化可能会掩盖由于归因于变化原因的歧义而导致的显着治疗作用的检测。由于实验设计的局限性,而不是由于治疗衰竭,这可能会阻碍有效疗法的发展。描述了对成像信号中生物变异和异质性进行建模的改进方法。具体而言,线性泊松建模(LPM)在放疗前和72小时之前评估了两种结直肠癌的异种移植模型,在放疗前和72小时后评估了明显的扩散效率(ADC)的变化。使用基本ADC分布参数的常规t检验分析将测量变化的统计显着性与可实现的变化的统计显着性进行了比较。当LPM应用于治疗的肿瘤时,LPM检测到了高度显着的变化。与常规方法相比,所有肿瘤的分析对于所有肿瘤都很重要,相当于4倍的增益(即等同于样本量大16倍)。相比之下,只有使用t检验在队列水平上检测到极大的变化,从而限制了其在个性化医学中的潜在用途,并增加了测试过程中所需的动物数量。此外,LPM使每个异种移植模型估计响应和非反应组织的相对体积。对处理过的异种移植物的剩余分析提供了质量控制并确定了潜在的异常值,从而提高了对临床相关样本量的LPM数据的信心。
translated by 谷歌翻译
Three main points: 1. Data Science (DS) will be increasingly important to heliophysics; 2. Methods of heliophysics science discovery will continually evolve, requiring the use of learning technologies [e.g., machine learning (ML)] that are applied rigorously and that are capable of supporting discovery; and 3. To grow with the pace of data, technology, and workforce changes, heliophysics requires a new approach to the representation of knowledge.
translated by 谷歌翻译
当植物天然产物与药物共容纳时,就会发生药代动力学天然产物 - 药物相互作用(NPDIS)。了解NPDI的机制是防止不良事件的关键。我们构建了一个知识图框架NP-KG,作为迈向药代动力学NPDIS的计算发现的一步。 NP-KG是一个具有生物医学本体论,链接数据和科学文献的全文,由表型知识翻译框架和语义关系提取系统,SEMREP和集成网络和动态推理组成的构建的科学文献的全文。通过路径搜索和元路径发现对药代动力学绿茶和kratom-prug相互作用的案例研究评估NP-KG,以确定与地面真实数据相比的一致性和矛盾信息。完全集成的NP-KG由745,512个节点和7,249,576个边缘组成。 NP-KG的评估导致了一致(绿茶的38.98%,kratom的50%),矛盾(绿茶的15.25%,21.43%,Kratom的21.43%),同等和矛盾的(15.25%)(21.43%,21.43%,21.43% kratom)信息。几种声称的NPDI的潜在药代动力学机制,包括绿茶 - 茶氧化烯,绿茶 - 纳多洛尔,Kratom-Midazolam,Kratom-Quetiapine和Kratom-Venlafaxine相互作用,与已出版的文献一致。 NP-KG是第一个将生物医学本体论与专注于天然产品的科学文献的全文相结合的公斤。我们证明了NP-KG在鉴定涉及酶,转运蛋白和药物的药代动力学相互作用的应用。我们设想NP-KG将有助于改善人机合作,以指导研究人员将来对药代动力学NPDIS进行研究。 NP-KG框架可在https://doi.org/10.5281/zenodo.6814507和https://github.com/sanyabt/np-kg上公开获得。
translated by 谷歌翻译
自然界中多元化的生态学在许多物种中具有各种形式的群体行为。蝴蝶物种是随机飞行的突出物种之一,有点有见地,并将其转化为人造隐喻将导致巨大的可能性。本文认为一种这种隐喻称为蝴蝶交配优化(BMO)。在BMO中,BFLE遵循巡逻的交配现象,并同时捕获了多模式函数的所有局部优势。为了模仿该算法,设计了一个移动机器人(BFlyBot),以满足BMO算法中BFLE的功能。此外,多Bflybot群的设计旨在像蝴蝶本质上的作用,并遵循该算法的规则。实时实验是在多动物领域的BMO算法上进行的,并将信号源视为光源。实验结果表明,BMO算法适用于检测多个信号源,其运动的变化显着,即静态和动态。在静态信号源的情况下,随着BFlybot的初始位置的不同,收敛性在时间和平稳性方面受到影响。而具有不同阶梯尺寸的实验会导致它们在机器人的执行时间和速度方面的变化。在这项工作中,在动态环境中进行了实验,在该环境中,信号源在操纵和非操作场景中的运动。 Bflybot群能够检测到单个和多信号源,在两个固定点之间在两个固定点之间进行线性移动,以圆形,向上和向下运动。评估BMO现象,各种正在进行的和前瞻性的作品,例如中海船舶检测,讨论了空中搜索应用和地震预测。
translated by 谷歌翻译
开发有效的自动分类器将真实来源与工件分开,对于宽场光学调查的瞬时随访至关重要。在图像差异过程之后,从减法伪像的瞬态检测鉴定是此类分类器的关键步骤,称为真实 - 博格斯分类问题。我们将自我监督的机器学习模型,深入的自组织地图(DESOM)应用于这个“真实的模拟”分类问题。 DESOM结合了自动编码器和一个自组织图以执行聚类,以根据其维度降低的表示形式来区分真实和虚假的检测。我们使用32x32归一化检测缩略图作为底部的输入。我们展示了不同的模型训练方法,并发现我们的最佳DESOM分类器显示出6.6%的检测率,假阳性率为1.5%。 Desom提供了一种更细微的方法来微调决策边界,以确定与其他类型的分类器(例如在神经网络或决策树上构建的)结合使用时可能进行的实际检测。我们还讨论了DESOM及其局限性的其他潜在用法。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
Majorana示威者是一项领先的实验,寻找具有高纯净锗探测器(HPGE)的中性s中性双β衰变。机器学习提供了一种最大化这些检测器提供的信息量的新方法,但是与传统分析相比,数据驱动的性质使其不可解释。一项可解释性研究揭示了机器的决策逻辑,使我们能够从机器中学习以反馈传统分析。在这项工作中,我们介绍了Majorana演示者数据的第一个机器学习分析。这也是对任何锗探测器实验的第一个可解释的机器学习分析。训练了两个梯度增强的决策树模型,以从数据中学习,并进行了基于游戏理论的模型可解释性研究,以了解分类功率的起源。通过从数据中学习,该分析识别重建参数之间的相关性,以进一步增强背景拒绝性能。通过从机器中学习,该分析揭示了新的背景类别对相互利用的标准Majorana分析的重要性。该模型与下一代锗探测器实验(如传说)高度兼容,因为它可以同时在大量探测器上进行训练。
translated by 谷歌翻译
我们从一组稀疏的光谱时间序列中构建了一个物理参数化的概率自动编码器(PAE),以学习IA型超新星(SNE IA)的内在多样性。 PAE是一个两阶段的生成模型,由自动编码器(AE)组成,该模型在使用归一化流(NF)训练后概率地解释。我们证明,PAE学习了一个低维的潜在空间,该空间可捕获人口内存在的非线性特征范围,并且可以直接从数据直接从数据中准确地对整个波长和观察时间进行精确模拟SNE IA的光谱演化。通过引入相关性惩罚项和多阶段训练设置以及我们的物理参数化网络,我们表明可以在训练期间分离内在和外在的可变性模式,从而消除了需要进行额外标准化的其他模型。然后,我们在SNE IA的许多下游任务中使用PAE进行越来越精确的宇宙学分析,包括自动检测SN Outliers,与数据分布一致的样本的产生以及在存在噪音和不完整数据的情况下解决逆问题限制宇宙距离测量。我们发现,与以前的研究相一致的最佳固有模型参数数量似乎是三个,并表明我们可以用$ 0.091 \ pm 0.010 $ mag标准化SNE IA的测试样本,该样本对应于$ 0.074 \ pm。 0.010 $ mag如果删除了特殊的速度贡献。训练有素的模型和代码在\ href {https://github.com/georgestein/supaernova} {github.com/georgestein/supaernova}上发布
translated by 谷歌翻译
数据增强是自然语言处理(NLP)模型的鲁棒性评估的重要组成部分,以及增强他们培训的数据的多样性。在本文中,我们呈现NL-Cogmenter,这是一种新的参与式Python的自然语言增强框架,它支持创建两个转换(对数据的修改)和过滤器(根据特定功能的数据拆分)。我们描述了框架和初始的117个变换和23个过滤器,用于各种自然语言任务。我们通过使用其几个转换来分析流行自然语言模型的鲁棒性来证明NL-Upmenter的功效。基础架构,Datacards和稳健性分析结果在NL-Augmenter存储库上公开可用(\ url {https://github.com/gem-benchmark/nl-augmenter})。
translated by 谷歌翻译
心电图(ECG)是一种有效且无侵入性诊断工具,可测量心脏的电活动。解释ECG信号检测各种异常是一个具有挑战性的任务,需要专业知识。最近,利用深度神经网络的ECG分类来帮助医疗从业者变得流行,但他们的黑匣子自然妨碍了临床实施。已经提出了几种基于显着性的可解释性技术,但它们仅表明重要特征的位置而不是实际功能。我们提出了一种名为QLST的新型解释性技术,一种基于查询的潜空间遍历技术,可以提供对任何ECG分类模型的解释。使用QLST,我们训练一个神经网络,该网络网络学习在大学医院数据集训练的变分性AutoEncoder的潜在空间中,超过80万家ECG为28个疾病。我们通过实验证明我们可以通过通过这些遍历来解释不同的黑匣子分类器。
translated by 谷歌翻译