对象检测是计算机视觉中的重要下游任务。对于车载边缘计算平台,很难实现实时检测要求。而且,由大量可分开的卷积层建立的轻巧模型无法达到足够的精度。我们引入了一种新的轻质卷积技术GSCONV,以减轻模型,但保持准确性。 GSCONV在模型的准确性和速度之间取得了极好的权衡。而且,我们提供了一个设计范式,即纤细的颈部,以实现探测器的更高计算成本效益。在二十多组比较实验中,我们的方法的有效性得到了强有力的证明。特别是,通过我们的方法改善的检测器获得了最先进的结果(例如,与原件相比,在Tesla T4 GPU上以〜100fps的速度为70.9%MAP0.5。代码可从https://github.com/alanli1997/slim-neck-by-gsconv获得。
translated by 谷歌翻译
深层剩余网络(RESNET)在各种现实世界应用中显示出最先进的性能。最近,重新聚集了重新分解模型并将其解释为连续的普通微分方程或神经模型的解决方案。在这项研究中,我们提出了一个具有层变化参数的神经通用的普通微分方程(神经 - 理)模型,以进一步扩展神经模块以近似离散的重新NET。具体而言,我们使用非参数B-Spline函数来参数化神经形成,以便可以轻松平衡模型复杂性和计算效率之间的权衡。证明重新结构和神经码模型是所提出的神经形模型的特殊情况。基于两个基准数据集,MNIST和CIFAR-10,我们表明,与标准神经模板相比,与层变化的神经形成更加灵活和通用。此外,神经学享有计算和记忆益处,同时在预测准确性方面具有相当的性能。
translated by 谷歌翻译
宫颈异常细胞检测是一项具有挑战性的任务,因为异常细胞和正常细胞之间的形态差异通常是微妙的。为了确定宫颈细胞是正常还是异常,细胞病理学家总是将周围细胞作为参考,并进行仔细比较以鉴定其异常。为了模仿这些临床行为,我们建议探索上下文关系,以提高宫颈异常细胞检测的性能。具体而言,利用细胞和细胞到全球图像之间的上下文关系,以增强每个感兴趣区域(ROI)建议的特征。因此,开发了两个模块,称为ROI关系注意模块(RRAM)和全球ROI注意模块(GRAM),还研究了它们的组合策略。我们通过使用特征金字塔网络(FPN)使用单头或双头更快的R-CNN来设置强基础,并将我们的RRAM和革兰氏集整合到它们中以验证提出的模块的有效性。由40,000个细胞学图像组成的大宫颈细胞检测数据集进行的实验表明,RRAM和GRAM的引入都比基线方法获得了更好的平均精度(AP)。此外,当级联RRAM和GRAM时,我们的方法优于最先进的方法(SOTA)方法。此外,我们还显示了提出的功能增强方案可以促进图像级别和涂片级别的分类。代码和训练有素的模型可在https://github.com/cviu-csu/cr4cacd上公开获得。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
Learning feature interactions is the key to success for the large-scale CTR prediction and recommendation. In practice, handcrafted feature engineering usually requires exhaustive searching. In order to reduce the high cost of human efforts in feature engineering, researchers propose several deep neural networks (DNN)-based approaches to learn the feature interactions in an end-to-end fashion. However, existing methods either do not learn both vector-wise interactions and bit-wise interactions simultaneously, or fail to combine them in a controllable manner. In this paper, we propose a new model, xDeepInt, based on a novel network architecture called polynomial interaction network (PIN) which learns higher-order vector-wise interactions recursively. By integrating subspace-crossing mechanism, we enable xDeepInt to balance the mixture of vector-wise and bit-wise feature interactions at a bounded order. Based on the network architecture, we customize a combined optimization strategy to conduct feature selection and interaction selection. We implement the proposed model and evaluate the model performance on three real-world datasets. Our experiment results demonstrate the efficacy and effectiveness of xDeepInt over state-of-the-art models. We open-source the TensorFlow implementation of xDeepInt: https://github.com/yanyachen/xDeepInt.
translated by 谷歌翻译