In this paper we explore the task of modeling (semi) structured object sequences; in particular we focus our attention on the problem of developing a structure-aware input representation for such sequences. In such sequences, we assume that each structured object is represented by a set of key-value pairs which encode the attributes of the structured object. Given a universe of keys, a sequence of structured objects can then be viewed as an evolution of the values for each key, over time. We encode and construct a sequential representation using the values for a particular key (Temporal Value Modeling - TVM) and then self-attend over the set of key-conditioned value sequences to a create a representation of the structured object sequence (Key Aggregation - KA). We pre-train and fine-tune the two components independently and present an innovative training schedule that interleaves the training of both modules with shared attention heads. We find that this iterative two part-training results in better performance than a unified network with hierarchical encoding as well as over, other methods that use a {\em record-view} representation of the sequence \cite{de2021transformers4rec} or a simple {\em flattened} representation of the sequence. We conduct experiments using real-world data to demonstrate the advantage of interleaving TVM-KA on multiple tasks and detailed ablation studies motivating our modeling choices. We find that our approach performs better than flattening sequence objects and also allows us to operate on significantly larger sequences than existing methods.
translated by 谷歌翻译
旨在恢复图像中影子区域的原始强度,并使它们与剩余的非阴影区域兼容,而没有跟踪,删除阴影是一个非常具有挑战性的问题,使许多下游图像/视频相关的任务受益。最近,变形金刚通过捕获全局像素相互作用来显示它们在各种应用中的强大能力,并且这种能力在删除阴影时非常可取。然而,由于以下两个原因,应用变压器促进阴影去除是非平凡的:1)修补程序操作不适用于由于不规则的阴影形状而导致阴影去除; 2)阴影去除只需要从非阴影区域到阴影区域的单向交互,而不是图像中所有像素之间的共同双向相互作用。在本文中,我们提出了一种新型的跨区域变压器,即CRFormer,用于去除阴影,它与现有变压器的不同之处仅通过考虑从非阴影区域到阴影区域的像素相互作用而不将图像分为斑块。这是通过精心设计的区域感知的跨注意操作来实现的,该操作可以汇总以非阴影区域特征为条件的恢复的阴影区域特征。与其他最先进的方法相比,关于ISTD,AISTD,SRD和视频阴影删除数据集的广泛实验证明了我们方法的优势。
translated by 谷歌翻译
Machine learning methods have revolutionized the discovery process of new molecules and materials. However, the intensive training process of neural networks for molecules with ever-increasing complexity has resulted in exponential growth in computation cost, leading to long simulation time and high energy consumption. Photonic chip technology offers an alternative platform for implementing neural networks with faster data processing and lower energy usage compared to digital computers. Photonics technology is naturally capable of implementing complex-valued neural networks at no additional hardware cost. Here, we demonstrate the capability of photonic neural networks for predicting the quantum mechanical properties of molecules. To the best of our knowledge, this work is the first to harness photonic technology for machine learning applications in computational chemistry and molecular sciences, such as drug discovery and materials design. We further show that multiple properties can be learned simultaneously in a photonic chip via a multi-task regression learning algorithm, which is also the first of its kind as well, as most previous works focus on implementing a network in the classification task.
translated by 谷歌翻译
目前全面监督的面部地标检测方法迅速进行,实现了显着性能。然而,当在大型姿势和重闭合的面孔和重闭合时仍然遭受痛苦,以进行不准确的面部形状约束,并且标记的训练样本不足。在本文中,我们提出了一个半监督框架,即自我校准的姿势注意网络(SCPAN),以实现更具挑战性的情景中的更强大和精确的面部地标检测。具体地,建议通过定影边界和地标强度场信息来模拟更有效的面部形状约束的边界意识的地标强度(BALI)字段。此外,设计了一种自我校准的姿势注意力(SCPA)模型,用于提供自学习的目标函数,该功能通过引入自校准机制和姿势注意掩模而无需标签信息而无需标签信息。我们认为,通过将巴厘岛领域和SCPA模型集成到新颖的自我校准的姿势网络中,可以了解更多的面部现有知识,并且我们的面孔方法的检测精度和稳健性得到了改善。获得具有挑战性的基准数据集获得的实验结果表明,我们的方法优于文献中最先进的方法。
translated by 谷歌翻译
通过纳入缺失区域的先验知识,通常用于图像染色的辅助损失导致更好的重建性能。但是,它通常需要充分利用辅助损失的潜力需要很多努力,因为加权辅助损失不当会分散模型从染色任务中的注意力,并且辅助损失的有效性可能在培训过程中变化。此外,辅助损失的设计需要域专业知识。在这项工作中,我们介绍了辅助损耗适应(Adaption)算法动态调整辅助丢失的参数,以更好地帮助主要任务。我们的算法基于更好的辅助损耗的原理是通过梯度下降的几个步骤提高主要损失性能的原理。然后,我们检查了两个常用的辅助损失,以适应\ ac {ala}来调整它们的参数。实验结果表明,ALA诱导比固定辅助损失更具竞争力的耐受效果。特别是,只需用\ ac {ALA}结合辅助损耗,现有的染色方法可以在未经明确地结合精密网络设计或结构知识的情况下实现增加的性能。
translated by 谷歌翻译
Face Anti-spoofing (FAS) is essential to secure face recognition systems from various physical attacks. However, recent research generally focuses on short-distance applications (i.e., phone unlocking) while lacking consideration of long-distance scenes (i.e., surveillance security checks). In order to promote relevant research and fill this gap in the community, we collect a large-scale Surveillance High-Fidelity Mask (SuHiFiMask) dataset captured under 40 surveillance scenes, which has 101 subjects from different age groups with 232 3D attacks (high-fidelity masks), 200 2D attacks (posters, portraits, and screens), and 2 adversarial attacks. In this scene, low image resolution and noise interference are new challenges faced in surveillance FAS. Together with the SuHiFiMask dataset, we propose a Contrastive Quality-Invariance Learning (CQIL) network to alleviate the performance degradation caused by image quality from three aspects: (1) An Image Quality Variable module (IQV) is introduced to recover image information associated with discrimination by combining the super-resolution network. (2) Using generated sample pairs to simulate quality variance distributions to help contrastive learning strategies obtain robust feature representation under quality variation. (3) A Separate Quality Network (SQN) is designed to learn discriminative features independent of image quality. Finally, a large number of experiments verify the quality of the SuHiFiMask dataset and the superiority of the proposed CQIL.
translated by 谷歌翻译
Temporal sentence grounding (TSG) aims to identify the temporal boundary of a specific segment from an untrimmed video by a sentence query. All existing works first utilize a sparse sampling strategy to extract a fixed number of video frames and then conduct multi-modal interactions with query sentence for reasoning. However, we argue that these methods have overlooked two indispensable issues: 1) Boundary-bias: The annotated target segment generally refers to two specific frames as corresponding start and end timestamps. The video downsampling process may lose these two frames and take the adjacent irrelevant frames as new boundaries. 2) Reasoning-bias: Such incorrect new boundary frames also lead to the reasoning bias during frame-query interaction, reducing the generalization ability of model. To alleviate above limitations, in this paper, we propose a novel Siamese Sampling and Reasoning Network (SSRN) for TSG, which introduces a siamese sampling mechanism to generate additional contextual frames to enrich and refine the new boundaries. Specifically, a reasoning strategy is developed to learn the inter-relationship among these frames and generate soft labels on boundaries for more accurate frame-query reasoning. Such mechanism is also able to supplement the absent consecutive visual semantics to the sampled sparse frames for fine-grained activity understanding. Extensive experiments demonstrate the effectiveness of SSRN on three challenging datasets.
translated by 谷歌翻译
Deploying reliable deep learning techniques in interdisciplinary applications needs learned models to output accurate and ({even more importantly}) explainable predictions. Existing approaches typically explicate network outputs in a post-hoc fashion, under an implicit assumption that faithful explanations come from accurate predictions/classifications. We have an opposite claim that explanations boost (or even determine) classification. That is, end-to-end learning of explanation factors to augment discriminative representation extraction could be a more intuitive strategy to inversely assure fine-grained explainability, e.g., in those neuroimaging and neuroscience studies with high-dimensional data containing noisy, redundant, and task-irrelevant information. In this paper, we propose such an explainable geometric deep network dubbed as NeuroExplainer, with applications to uncover altered infant cortical development patterns associated with preterm birth. Given fundamental cortical attributes as network input, our NeuroExplainer adopts a hierarchical attention-decoding framework to learn fine-grained attentions and respective discriminative representations to accurately recognize preterm infants from term-born infants at term-equivalent age. NeuroExplainer learns the hierarchical attention-decoding modules under subject-level weak supervision coupled with targeted regularizers deduced from domain knowledge regarding brain development. These prior-guided constraints implicitly maximizes the explainability metrics (i.e., fidelity, sparsity, and stability) in network training, driving the learned network to output detailed explanations and accurate classifications. Experimental results on the public dHCP benchmark suggest that NeuroExplainer led to quantitatively reliable explanation results that are qualitatively consistent with representative neuroimaging studies.
translated by 谷歌翻译
Unlike traditional distributed machine learning, federated learning stores data locally for training and then aggregates the models on the server, which solves the data security problem that may arise in traditional distributed machine learning. However, during the training process, the transmission of model parameters can impose a significant load on the network bandwidth. It has been pointed out that the vast majority of model parameters are redundant during model parameter transmission. In this paper, we explore the data distribution law of selected partial model parameters on this basis, and propose a deep hierarchical quantization compression algorithm, which further compresses the model and reduces the network load brought by data transmission through the hierarchical quantization of model parameters. And we adopt a dynamic sampling strategy for the selection of clients to accelerate the convergence of the model. Experimental results on different public datasets demonstrate the effectiveness of our algorithm.
translated by 谷歌翻译
In the new era of personalization, learning the heterogeneous treatment effect (HTE) becomes an inevitable trend with numerous applications. Yet, most existing HTE estimation methods focus on independently and identically distributed observations and cannot handle the non-stationarity and temporal dependency in the common panel data setting. The treatment evaluators developed for panel data, on the other hand, typically ignore the individualized information. To fill the gap, in this paper, we initialize the study of HTE estimation in panel data. Under different assumptions for HTE identifiability, we propose the corresponding heterogeneous one-side and two-side synthetic learner, namely H1SL and H2SL, by leveraging the state-of-the-art HTE estimator for non-panel data and generalizing the synthetic control method that allows flexible data generating process. We establish the convergence rates of the proposed estimators. The superior performance of the proposed methods over existing ones is demonstrated by extensive numerical studies.
translated by 谷歌翻译