Persuasion modeling is a key building block for conversational agents. Existing works in this direction are limited to analyzing textual dialogue corpus. We argue that visual signals also play an important role in understanding human persuasive behaviors. In this paper, we introduce the first multimodal dataset for modeling persuasion behaviors. Our dataset includes 199 dialogue transcriptions and videos captured in a multi-player social deduction game setting, 26,647 utterance level annotations of persuasion strategy, and game level annotations of deduction game outcomes. We provide extensive experiments to show how dialogue context and visual signals benefit persuasion strategy prediction. We also explore the generalization ability of language models for persuasion modeling and the role of persuasion strategies in predicting social deduction game outcomes. Our dataset, code, and models can be found at https://persuasion-deductiongame.socialai-data.org.
translated by 谷歌翻译
In recent years, the number of parameters of one deep learning (DL) model has been growing much faster than the growth of GPU memory space. People who are inaccessible to a large number of GPUs resort to heterogeneous training systems for storing model parameters in CPU memory. Existing heterogeneous systems are based on parallelization plans in the scope of the whole model. They apply a consistent parallel training method for all the operators in the computation. Therefore, engineers need to pay a huge effort to incorporate a new type of model parallelism and patch its compatibility with other parallelisms. For example, Mixture-of-Experts (MoE) is still incompatible with ZeRO-3 in Deepspeed. Also, current systems face efficiency problems on small scale, since they are designed and tuned for large-scale training. In this paper, we propose Elixir, a new parallel heterogeneous training system, which is designed for efficiency and flexibility. Elixir utilizes memory resources and computing resources of both GPU and CPU. For flexibility, Elixir generates parallelization plans in the granularity of operators. Any new type of model parallelism can be incorporated by assigning a parallel pattern to the operator. For efficiency, Elixir implements a hierarchical distributed memory management scheme to accelerate inter-GPU communications and CPU-GPU data transmissions. As a result, Elixir can train a 30B OPT model on an A100 with 40GB CUDA memory, meanwhile reaching 84% efficiency of Pytorch GPU training. With its super-linear scalability, the training efficiency becomes the same as Pytorch GPU training on multiple GPUs. Also, large MoE models can be trained 5.3x faster than dense models of the same size. Now Elixir is integrated into ColossalAI and is available on its main branch.
translated by 谷歌翻译
变压器模型的成功将深度学习模型量表推向了数十亿个参数。但是,由于单个GPU的内存资源有限,因此仍然缺乏选择最佳并行策略的最佳实践,因为它需要深度学习和并行计算方面的域专业知识。巨大的AI系统通过引入统一的界面来解决上述挑战,以将模型培训的顺序代码扩展到分布式环境。它支持并行训练方法,例如数据,管道,张量和序列并行性,以及与零冗余优化器集成的异质训练方法。与基线系统相比,巨大的AI可以实现大型型号的训练速度的2.76倍。
translated by 谷歌翻译
Generating a chain of thought (CoT) can increase large language model (LLM) performance on a wide range of tasks. Zero-shot CoT evaluations, however, have been conducted primarily on logical tasks (e.g. arithmetic, commonsense QA). In this paper, we perform a controlled evaluation of zero-shot CoT across two sensitive domains: harmful questions and stereotype benchmarks. We find that using zero-shot CoT reasoning in a prompt can significantly increase a model's likelihood to produce undesirable output. Without future advances in alignment or explicit mitigation instructions, zero-shot CoT should be avoided on tasks where models can make inferences about marginalized groups or harmful topics.
translated by 谷歌翻译
In the presence of noisy labels, designing robust loss functions is critical for securing the generalization performance of deep neural networks. Cross Entropy (CE) loss has been shown to be not robust to noisy labels due to its unboundedness. To alleviate this issue, existing works typically design specialized robust losses with the symmetric condition, which usually lead to the underfitting issue. In this paper, our key idea is to induce a loss bound at the logit level, thus universally enhancing the noise robustness of existing losses. Specifically, we propose logit clipping (LogitClip), which clamps the norm of the logit vector to ensure that it is upper bounded by a constant. In this manner, CE loss equipped with our LogitClip method is effectively bounded, mitigating the overfitting to examples with noisy labels. Moreover, we present theoretical analyses to certify the noise-tolerant ability of LogitClip. Extensive experiments show that LogitClip not only significantly improves the noise robustness of CE loss, but also broadly enhances the generalization performance of popular robust losses.
translated by 谷歌翻译
图像目标导航是一项具有挑战性的任务,因为它要求代理必须导航到以前看不见的场景中图像指示的目标。当前方法介绍了各种存储机制,这些记忆机制可以保存导航历史记录以解决此任务。但是,这些方法使用内存中的所有观察值来生成导航操作,而无需考虑该内存的哪一部分是有益的。为了解决这一限制,我们提出了Memonav,这是一种用于图像目标导航的新型内存机制,该机制保留了代理商的短期记忆和长期记忆,以改善多进球任务上的导航性能。代理拓扑图上的节点功能存储在短期内存中,因为这些功能已动态更新。为了帮助短期记忆,我们还通过通过图形注意模块连续汇总短期内存来生成长期记忆。 MEMONAV通过基于变压器解码器的遗忘模块保留短期内存的信息部分,然后将此保留的短期内存和长期内存结合到工作内存中。最后,代理使用工作内存进行动作生成。我们在新的多进球导航数据集上评估了我们的模型。实验结果表明,MEMONAV的表现优于SOTA方法,而导航历史悠久的比例较小。从经验上看,结果还表明,我们的模型不太可能被困在僵局中,这进一步验证了Memonav通过减少冗余步骤来提高代理商的导航效率。
translated by 谷歌翻译
当训练数据集患有极端阶级失衡时,深度神经网络通常会表现不佳。最近的研究发现,以半监督的方式直接使用分布外数据(即开放式样本)培训将损害概括性能。在这项工作中,我们从理论上表明,从贝叶斯的角度来看,仍然可以利用分发数据来扩大少数群体。基于这种动机,我们提出了一种称为开放采样的新方法,该方法利用开放式嘈杂标签重新平衡培训数据集的班级先验。对于每个开放式实例,标签是​​从我们的预定义分布中取样的,该分布互补,与原始类先验的分布互补。我们从经验上表明,开放采样不仅可以重新平衡阶级先验,还鼓励神经网络学习可分离的表示。广泛的实验表明,我们提出的方法显着优于现有数据重新平衡方法,并可以提高现有最新方法的性能。
translated by 谷歌翻译
Class-incremental learning (CIL) learns a classification model with training data of different classes arising progressively. Existing CIL either suffers from serious accuracy loss due to catastrophic forgetting, or invades data privacy by revisiting used exemplars. Inspired by linear learning formulations, we propose an analytic class-incremental learning (ACIL) with absolute memorization of past knowledge while avoiding breaching of data privacy (i.e., without storing historical data). The absolute memorization is demonstrated in the sense that class-incremental learning using ACIL given present data would give identical results to that from its joint-learning counterpart which consumes both present and historical samples. This equality is theoretically validated. Data privacy is ensured since no historical data are involved during the learning process. Empirical validations demonstrate ACIL's competitive accuracy performance with near-identical results for various incremental task settings (e.g., 5-50 phases). This also allows ACIL to outperform the state-of-the-art methods for large-phase scenarios (e.g., 25 and 50 phases).
translated by 谷歌翻译
检测到分布输入对于在现实世界中安全部署机器学习模型至关重要。然而,已知神经网络遭受过度自信的问题,在该问题中,它们对分布和分布的输入的信心异常高。在这项工作中,我们表明,可以通过在训练中实施恒定的向量规范来通过logit归一化(logitnorm)(logitnorm)来缓解此问题。我们的方法是通过分析的激励,即logit的规范在训练过程中不断增加,从而导致过度自信的产出。因此,LogitNorm背后的关键思想是将网络优化期间输出规范的影响解散。通过LogitNorm培训,神经网络在分布数据和分布数据之间产生高度可区分的置信度得分。广泛的实验证明了LogitNorm的优势,在公共基准上,平均FPR95最高为42.30%。
translated by 谷歌翻译
现代数字世界越来越多地成为多式联运。虽然多式化学习最近革命了多模式任务的最先进的性能,但对普发的环境中多式化学习的稳健性具有相对较小的。在本文中,通过专注于多峰模型中的输入方式的融合,介绍了多式化学习的对抗鲁棒性的全面测量,通过称为Muroan(多模式鲁棒性分析仪)。我们首先在穆拉南举行统一的多模式模型的统一视图,并确定多式联运模型的融合机制作为关键漏洞。然后,我们介绍了一种新型的多模式对抗攻击,称为穆罗的解耦攻击,旨在通过解耦它们的融合方式来损害多模型模型。我们利用Muroan的解耦攻击来测量几种最先进的多模型模型,并发现所有这些模型中的多模式融合机制都容易攻击攻击。我们特别证明,在最坏的情况下,Muroan的去耦攻击通过解耦仅为1.16%的输入空间来实现100%的攻击成功率。最后,我们表明,传统的对抗性培训不足以改善多式联模型相对于解耦攻击的鲁棒性。我们希望我们的调查结果鼓励研究人员追求改善多式化学习的稳健性。
translated by 谷歌翻译