Mixup is a popular data augmentation technique for training deep neural networks where additional samples are generated by linearly interpolating pairs of inputs and their labels. This technique is known to improve the generalization performance in many learning paradigms and applications. In this work, we first analyze Mixup and show that it implicitly regularizes infinitely many directional derivatives of all orders. We then propose a new method to improve Mixup based on the novel insight. To demonstrate the effectiveness of the proposed method, we conduct experiments across various domains such as images, tabular data, speech, and graphs. Our results show that the proposed method improves Mixup across various datasets using a variety of architectures, for instance, exhibiting an improvement over Mixup by 0.8% in ImageNet top-1 accuracy.
translated by 谷歌翻译
我们提出了一个数据收集和注释管道,该数据从越南放射学报告中提取信息,以提供胸部X射线(CXR)图像的准确标签。这可以通过注释与其特有诊断类别的数据相匹配,这些数据可能因国家而异。为了评估所提出的标签技术的功效,我们构建了一个包含9,752项研究的CXR数据集,并使用该数据集的子集评估了我们的管道。以F1得分为至少0.9923,评估表明,我们的标签工具在所有类别中都精确而始终如一。构建数据集后,我们训练深度学习模型,以利用从大型公共CXR数据集传输的知识。我们采用各种损失功能来克服不平衡的多标签数据集的诅咒,并使用各种模型体系结构进行实验,以选择提供最佳性能的诅咒。我们的最佳模型(CHEXPERT-FRECTER EDIDENENET-B2)的F1得分为0.6989(95%CI 0.6740,0.7240),AUC为0.7912,敏感性为0.7064,特异性为0.8760,普遍诊断为0.8760。最后,我们证明了我们的粗分类(基于五个特定的异常位置)在基准CHEXPERT数据集上获得了可比的结果(十二个病理),以进行一般异常检测,同时在所有类别的平均表现方面提供更好的性能。
translated by 谷歌翻译
药物误解是可能导致对患者造成不可预测后果的风险之一。为了减轻这种风险,我们开发了一个自动系统,该系统可以正确识别移动图像中的药丸的处方。具体来说,我们定义了所谓的药丸匹配任务,该任务试图匹配处方药中药丸所拍摄的药丸的图像。然后,我们提出了PIMA,这是一种使用图神经网络(GNN)和对比度学习来解决目标问题的新方法。特别是,GNN用于学习处方中文本框之间的空间相关性,从而突出显示带有药丸名称的文本框。此外,采用对比度学习来促进药丸名称的文本表示与药丸图像的视觉表示之间的跨模式相似性的建模。我们进行了广泛的实验,并证明PIMA在我们构建的药丸和处方图像的现实数据集上优于基线模型。具体而言,与其他基线相比,PIMA的准确性从19.09%提高到46.95%。我们认为,我们的工作可以为建立新的临床应用并改善药物安全和患者护理提供新的机会。
translated by 谷歌翻译
如今,越来越多的人被诊断出患有心血管疾病(CVD),这是全球死亡的主要原因。鉴定这些心脏问题的金标准是通过心电图(ECG)。标准的12铅ECG广泛用于临床实践和当前的大多数研究。但是,使用较少的铅可以使ECG更加普遍,因为它可以与便携式或可穿戴设备集成。本文介绍了两种新型技术,以提高当前深度学习系统的3铅ECG分类的性能,从而与使用标准12铅ECG训练的模型相提并论。具体而言,我们提出了一种以心跳回归数量的形式的多任务学习方案,以及将患者人口统计数据整合到系统中的有效机制。随着这两个进步,我们在两个大规模的ECG数据集(即Chapman和CPSC-2018)上以F1分数为0.9796和0.8140的分类性能,这些数据分别超过了当前最新的ECG分类方法,该方法超过了当前的ECG分类方法。甚至那些接受了12条铅数据的培训。为了鼓励进一步开发,我们的源代码可在https://github.com/lhkhiem28/lightx3ecg上公开获得。
translated by 谷歌翻译
COVID-19大流行已经暴露了全球医疗服务的脆弱性,增加了开发新颖的工具来提供快速且具有成本效益的筛查和诊断的需求。临床报告表明,Covid-19感染可能导致心脏损伤,心电图(ECG)可以作为Covid-19的诊断生物标志物。这项研究旨在利用ECG信号自动检测COVID-19。我们提出了一种从ECG纸记录中提取ECG信号的新方法,然后将其送入一维卷积神经网络(1D-CNN)中,以学习和诊断疾病。为了评估数字信号的质量,标记了基于纸张的ECG图像中的R峰。之后,将从每个图像计算的RR间隔与相应数字化信号的RR间隔进行比较。 COVID-19 ECG图像数据集上的实验表明,提出的数字化方法能够正确捕获原始信号,平均绝对误差为28.11 ms。我们提出的1D-CNN模型在数字化的心电图信号上进行了训练,允许准确识别患有COVID-19和其他受试者的个体,分类精度为98.42%,95.63%和98.50%,用于分类COVID-19 vs.正常,与正常人分类, COVID-19与异常心跳和Covid-19和其他类别分别与其他阶级。此外,提出的方法还为多分类任务实现了高级的性能。我们的发现表明,经过数字化的心电图信号训练的深度学习系统可以作为诊断Covid-19的潜在工具。
translated by 谷歌翻译
人类行动识别是计算机视觉中的重要应用领域。它的主要目的是准确地描述人类的行为及其相互作用,从传感器获得的先前看不见的数据序列中。识别,理解和预测复杂人类行动的能力能够构建许多重要的应用,例如智能监视系统,人力计算机界面,医疗保健,安全和军事应用。近年来,计算机视觉社区特别关注深度学习。本文使用深度学习技术的视频分析概述了当前的动作识别最新识别。我们提出了识别人类行为的最重要的深度学习模型,并分析它们,以提供用于解决人类行动识别问题的深度学习算法的当前进展,以突出其优势和缺点。基于文献中报道的识别精度的定量分析,我们的研究确定了动作识别中最新的深层体系结构,然后为该领域的未来工作提供当前的趋势和开放问题。
translated by 谷歌翻译
最近的人工智能(AI)算法已在各种医学分类任务上实现了放射科医生级的性能。但是,只有少数研究涉及CXR扫描异常发现的定位,这对于向放射学家解释图像级分类至关重要。我们在本文中介绍了一个名为Vindr-CXR的可解释的深度学习系统,该系统可以将CXR扫描分类为多种胸部疾病,同时将大多数类型的关键发现本地化在图像上。 Vindr-CXR接受了51,485次CXR扫描的培训,并通过放射科医生提供的边界盒注释进行了培训。它表现出与经验丰富的放射科医生相当的表现,可以在3,000张CXR扫描的回顾性验证集上对6种常见的胸部疾病进行分类,而在接收器操作特征曲线(AUROC)下的平均面积为0.967(95%置信区间[CI]:0.958---------0.958------- 0.975)。 VINDR-CXR在独立患者队列中也得到了外部验证,并显示出其稳健性。对于具有14种类型病变的本地化任务,我们的自由响应接收器操作特征(FROC)分析表明,VINDR-CXR以每扫描确定的1.0假阳性病变的速率达到80.2%的敏感性。还进行了一项前瞻性研究,以衡量VINDR-CXR在协助六名经验丰富的放射科医生方面的临床影响。结果表明,当用作诊断工具时,提出的系统显着改善了放射科医生本身之间的一致性,平均Fleiss的Kappa的同意增加了1.5%。我们还观察到,在放射科医生咨询了Vindr-CXR的建议之后,在平均Cohen的Kappa中,它们和系统之间的一致性显着增加了3.3%。
translated by 谷歌翻译
表示技术的快速发展和大规模医学成像数据的可用性必须在3D医学图像分析中快速增加机器学习的使用。特别是,深度卷积神经网络(D-CNN)是关键参与者,并被医学成像界采用,以协助临床医生和医学专家进行疾病诊断。然而,培训深层神经网络,例如在高分辨率3D体积的计算机断层扫描(CT)扫描中进行诊断任务的D-CNN带来了强大的计算挑战。这提出了开发基于深度学习的方法,这些方法在2D图像中具有强大的学习表示形式,而是3D扫描。在本文中,我们提出了一种新的策略,以根据沿轴的相邻切片的描述来训练CT扫描上的\ emph {slice level}分类器。特别是,每一个都是通过卷积神经网络(CNN)提取的。该方法适用于具有每片标签的CT数据集,例如RSNA颅内出血(ICH)数据集,该数据集旨在预测ICH的存在并将其分类为5个不同的子类型。我们在RSNA ICH挑战的最佳4 \%最佳解决方案中获得了单个模型,其中允许模型集成。实验还表明,所提出的方法显着优于CQ500上的基线模型。所提出的方法是一般的,可以应用于其他3D医学诊断任务,例如MRI成像。为了鼓励该领域的新进步,我们将在接受论文后制定我们的代码和预培训模型。
translated by 谷歌翻译
跨不同边缘设备(客户)局部数据的分布不均匀,导致模型训练缓慢,并降低了联合学习的准确性。幼稚的联合学习(FL)策略和大多数替代解决方案试图通过加权跨客户的深度学习模型来实现更多公平。这项工作介绍了在现实世界数据集中遇到的一种新颖的非IID类型,即集群键,其中客户组具有具有相似分布的本地数据,从而导致全局模型收敛到过度拟合的解决方案。为了处理非IID数据,尤其是群集串数据的数据,我们提出了FedDrl,这是一种新型的FL模型,它采用了深厚的强化学习来适应每个客户的影响因素(将用作聚合过程中的权重)。在一组联合数据集上进行了广泛的实验证实,拟议的FEDDR可以根据CIFAR-100数据集的平均平均为FedAvg和FedProx方法提高了有利的改进,例如,高达4.05%和2.17%。
translated by 谷歌翻译
鉴于在各种条件和背景下捕获的图像的识别药物已经变得越来越重要。已经致力于利用基于深度学习的方法来解决文献中的药丸识别问题。但是,由于药丸的外观之间的相似性很高,因此经常发生错误识别,因此识别药丸是一个挑战。为此,在本文中,我们介绍了一种名为Pika的新颖方法,该方法利用外部知识来增强药丸识别精度。具体来说,我们解决了一种实用的情况(我们称之为上下文药丸识别),旨在在患者药丸摄入量的情况下识别药丸。首先,我们提出了一种新的方法,用于建模在存在外部数据源的情况下,在这种情况下,在存在外部处方的情况下,药丸之间的隐式关联。其次,我们提出了一个基于步行的图形嵌入模型,该模型从图形空间转换为矢量空间,并提取药丸的凝结关系。第三,提供了最终框架,该框架利用基于图像的视觉和基于图的关系特征来完成药丸识别任务。在此框架内,每种药丸的视觉表示形式都映射到图形嵌入空间,然后用来通过图表执行注意力,从而产生了有助于最终分类的语义丰富的上下文矢量。据我们所知,这是第一项使用外部处方数据来建立药物之间的关联并使用此帮助信息对其进行分类的研究。皮卡(Pika)的体系结构轻巧,并且具有将识别骨架纳入任何识别骨架的灵活性。实验结果表明,通过利用外部知识图,与基线相比,PIKA可以将识别精度从4.8%提高到34.1%。
translated by 谷歌翻译