Accurate and consistent vehicle localization in urban areas is challenging due to the large-scale and complicated environments. In this paper, we propose onlineFGO, a novel time-centric graph-optimization-based localization method that fuses multiple sensor measurements with the continuous-time trajectory representation for vehicle localization tasks. We generalize the graph construction independent of any spatial sensor measurements by creating the states deterministically on time. As the trajectory representation in continuous-time enables querying states at arbitrary times, incoming sensor measurements can be factorized on the graph without requiring state alignment. We integrate different GNSS observations: pseudorange, deltarange, and time-differenced carrier phase (TDCP) to ensure global reference and fuse the relative motion from a LiDAR-odometry to improve the localization consistency while GNSS observations are not available. Experiments on general performance, effects of different factors, and hyper-parameter settings are conducted in a real-world measurement campaign in Aachen city that contains different urban scenarios. Our results show an average 2D error of 0.99m and consistent state estimation in urban scenarios.
translated by 谷歌翻译
电子商务查询通常简短而模棱两可。因此,查询理解通常使用查询重写来消除用户输入查询。在使用电子商务搜索工具时,用户倾向于在购买之前输入多个搜索,我们称之为上下文。这些历史搜索包含有关用户真正购物意图的上下文见解。因此,对此类上下文信息进行建模对于更好的查询重写模型至关重要。但是,现有的查询重写模型忽略了用户的历史行为,而仅考虑即时搜索查询,这通常是一个简短的字符串,提供有关真实购物意图的有限信息。我们建议一个端到端的上下文感知查询重写模型来弥合此差距,从而考虑了搜索上下文。具体而言,我们的模型使用历史记录搜索查询及其包含的单词构建了会话图。然后,我们采用图形注意机制,该机制对交叉关系进行建模并计算会话的上下文信息。随后,模型通过使用聚合网络将上下文信息与即时搜索查询组合来计算会话表示。然后将会话表示形式解码以生成重写的查询。从经验上讲,我们证明了我们方法对各种指标下最先进的方法的优越性。在从线购物平台的内部数据上,通过介绍上下文信息,我们的模型在MRR(平均值等级)指标下取得了11.6%的改善,并在HIT@16度量指标(命中率指标)下提高了20.1%使用最佳基线方法(基于变压器的模型)。
translated by 谷歌翻译
深度神经网络中的建筑进步导致了跨越一系列计算机视觉任务的巨大飞跃。神经建筑搜索(NAS)并没有依靠人类的专业知识,而是成为自动化建筑设计的有前途的途径。尽管图像分类的最新成就提出了机会,但NAS的承诺尚未对更具挑战性的语义细分任务进行彻底评估。将NAS应用于语义分割的主要挑战来自两个方面:(i)要处理的高分辨率图像; (ii)针对自动驾驶等应用的实时推理速度(即实时语义细分)的其他要求。为了应对此类挑战,我们在本文中提出了一种替代辅助的多目标方法。通过一系列自定义预测模型,我们的方法有效地将原始的NAS任务转换为普通的多目标优化问题。然后是用于填充选择的层次预筛选标准,我们的方法逐渐实现了一组有效的体系结构在细分精度和推理速度之间进行交易。对三个基准数据集的经验评估以及使用华为地图集200 dk的应用程序的实证评估表明,我们的方法可以识别架构明显优于人类专家手动设计和通过其他NAS方法自动设计的现有最先进的体系结构。
translated by 谷歌翻译
深度神经网络(DNN)模型通常是从​​一层到另一层的依次训练的,这会导致向前,向后和更新锁定的问题,从而导致训练时间的性能差。减轻这些问题的现有并行策略提供了次优的运行时性能。在这项工作中,我们提出了一种新颖的层面分区和合并,向前和向后通过并行框架,以提供更好的训练性能。拟议工作的新颖性包括1)层面分区和合并模型,该模型可以最大程度地降低设备之间的通信开销,而不会在培训过程中没有现有策略的记忆成本; 2)向后通过和向后通过并行化和优化,以解决更新锁定问题并最大程度地减少总培训成本。对实际用例的实验评估表明,所提出的方法在训练速度方面优于最先进的方法。并在不损害非平行方法的准确性性能的情况下实现几乎线性加速。
translated by 谷歌翻译
由于大型数据集中的深度学习模型需要大量时间和资源,因此希望构建一个小型合成数据集,我们可以通过该数据集充分训练深度学习模型。最近有一些作品通过复杂的BI级优化探索了有关凝结图像数据集的解决方案。例如,数据集冷凝(DC)匹配网络梯度W.R.T.大型数据和小合成数据,在每个外迭代处,网络权重优化了多个步骤。但是,现有方法具有其固有的局限性:(1)它们不直接适用于数据离散的图表; (2)由于所涉及的嵌套优化,冷凝过程在计算上昂贵。为了弥合差距,我们研究了针对图形数据集量身定制的有效数据集冷凝,在该数据集中我们将离散图结构模拟为概率模型。我们进一步提出了一个单步梯度匹配方案,该方案仅执行一个步骤,而无需训练网络权重。我们的理论分析表明,该策略可以生成合成图,从而导致实际图上的分类损失降低。各种图数据集的广泛实验证明了该方法的有效性和效率。特别是,我们能够将数据集大小降低90%,同时大约98%的原始性能,并且我们的方法明显快于多步梯度匹配(例如,CIFAR10中的15倍用于合成500个图)。
translated by 谷歌翻译
已经提出了图形神经网络(GNN)预训练方法来增强GNN的能力。具体而言,首先在大规模的未标记图上预先训练GNN,然后在单独的小标记图上进行微调,以用于下游应用程序,例如节点分类。一种流行的预训练方法是掩盖一部分边缘,并接受了GNN的培训以恢复它们。但是,这种生成方法遭受了图不匹配。也就是说,输入到GNN偏离原始图的蒙版图。为了减轻此问题,我们提出了DIP-GNN(图神经网络的歧视性预训练)。具体来说,我们训练一个发电机以恢复蒙版边缘的身份,同时,我们训练一个判别器,以区分生成的边缘与原始图的边缘。在我们的框架中,鉴别器看到的图形更好地匹配原始图,因为生成器可以恢复蒙版边缘的一部分。大规模同质和异质图的广泛实验证明了该框架的有效性。
translated by 谷歌翻译
本文报告了NTIRE 2022关于感知图像质量评估(IQA)的挑战,并与CVPR 2022的图像恢复和增强研讨会(NTIRE)研讨会(NTIRE)讲习班的新趋势举行。感知图像处理算法。这些算法的输出图像与传统扭曲具有完全不同的特征,并包含在此挑战中使用的PIP数据集中。这个挑战分为两条曲目,一个类似于以前的NTIRE IQA挑战的全参考IQA轨道,以及一条侧重于No-Reference IQA方法的新曲目。挑战有192和179名注册参与者的两条曲目。在最后的测试阶段,有7和8个参与的团队提交了模型和事实表。几乎所有这些都比现有的IQA方法取得了更好的结果,并且获胜方法可以证明最先进的性能。
translated by 谷歌翻译
深度神经网络(DNN)最近在计算机视觉和几个相关领域取得了巨大成功。尽管如此,目前的神经结构仍然遭受灾难性干扰(A.K.A.忘记),这阻碍了DNN不断学习。虽然已经提出了几种最先进的方法来缓解遗忘,但这些现有解决方案是高度僵化的(正则化)或时间/内存要求(作为重播)。在文献中提出了一种基于动态网络的中等方法,并在文献中提出了在任务记忆和计算足迹之间提供合理的平衡。在本文中,我们基于一种基于新颖的无遗忘神经块(FFNB)来设计用于持续学习的动态网络架构。使用新的程序实现新任务的FFNB功能,该程序可以通过在前一个任务的空空间中约束底层参数,而训练分类器参数等同于Fisher判别分析。后者提供了一种有效的增量过程,这也是贝叶斯视角的最佳。使用增量的“端到端”微调进一步增强了训练有素的功能和分类器。在不同具有挑战性的分类问题上进行的大量实验,表明了该方法的高效性。
translated by 谷歌翻译
The learning rate warmup heuristic achieves remarkable success in stabilizing training, accelerating convergence and improving generalization for adaptive stochastic optimization algorithms like RMSprop and Adam. Pursuing the theory behind warmup, we identify a problem of the adaptive learning rate -its variance is problematically large in the early stage, and presume warmup works as a variance reduction technique. We provide both empirical and theoretical evidence to verify our hypothesis. We further propose Rectified Adam (RAdam), a novel variant of Adam, by introducing a term to rectify the variance of the adaptive learning rate. Experimental results on image classification, language modeling, and neural machine translation verify our intuition and demonstrate the efficacy and robustness of RAdam. 1 * Work was done during an internship at Microsoft Dynamics 365 AI. † Work was done during an internship at Microsoft Dynamics 365 AI.
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译