心脏病发病率和心脏死亡率大大增加,这会影响全球公共卫生和世界经济。心脏病的早期预测对于降低心脏发病率和死亡率至关重要。本文提出了两种量子机学习方法,即混合量子神经网络和混合随机森林量子神经网络,用于早期检测心脏病。这些方法应用于克利夫兰和Statlog数据集上。结果表明,混合量子神经网络和混合随机森林量子神经网络分别适用于高维和低维问题。混合量子神经网络对离群数据敏感,而混合随机森林对异常数据的稳健数据具有稳健性。不同机器学习方法之间的比较表明,提出的量子方法更适合于早期的心脏病预测,其中分别为Cleveland和Statlog数据集获得了曲线下96.43%和97.78%的面积。
translated by 谷歌翻译
测量使用熵的时间序列的可预测性和复杂性是必不可少的工具去签名和控制非线性系统。然而,现有方法具有与熵对方法参数的强大依赖性相关的一些缺点。为了克服这些困难,本研究提出了一种使用LOGNNET神经网络模型估算时间序列熵的新方法。根据我们的算法,LognNet储库矩阵用时间序列元素填充。来自MNIST-10数据库的图像分类的准确性被认为是熵测量并由NNetEN表示。熵计算的新颖性是时间序列参与混合RES-ERVOIR中的输入信息。时间序列中的更大复杂性导致更高的分类精度和更高的Nneten值。我们介绍了一个新的时序序列特征,称为时间序列学习惯性,确定神经网络的学习率。该方法的鲁棒性和效率在混沌,周期性,随机,二进制和恒定时间序列上验证。 NNetEN与其他熵估计方法的比较表明,我们的方法更加稳健,准确,可广泛用于实践中。
translated by 谷歌翻译
在神经网络和物联网(IOT)时,寻找能够在有限的计算能力和小内存大小上运行的新神经网络架构成为紧急议程。为IOT应用程序设计合适的算法是一个重要任务。本文提出了一种馈送前向LognNet神经网络,它使用半线性Henon型离散混沌映射映射来分类MNIST-10数据集。该模型由储层部件和可培训分类器组成。储层部件的目的是使用特殊矩阵归档方法和混沌映射产生的时间序列来改变输入以最大化分类精度。使用随机移民的粒子群优化优化混沌图的参数。因此,与LognNet的原始版本相比,所提出的LognNet / HENON分类器具有更高的准确性和相同的RAM使用情况,并为IOT设备提供了有希望的实现机会。此外,证明了分类熵值与分类的准确性之间的直接关系。
translated by 谷歌翻译
In recent years, there is a growing number of pre-trained models trained on a large corpus of data and yielding good performance on various tasks such as classifying multimodal datasets. These models have shown good performance on natural images but are not fully explored for scarce abstract concepts in images. In this work, we introduce an image/text-based dataset called Greeting Cards. Dataset (GCD) that has abstract visual concepts. In our work, we propose to aggregate features from pretrained images and text embeddings to learn abstract visual concepts from GCD. This allows us to learn the text-modified image features, which combine complementary and redundant information from the multi-modal data streams into a single, meaningful feature. Secondly, the captions for the GCD dataset are computed with the pretrained CLIP-based image captioning model. Finally, we also demonstrate that the proposed the dataset is also useful for generating greeting card images using pre-trained text-to-image generation model.
translated by 谷歌翻译
For a number of tasks, such as 3D reconstruction, robotic interface, autonomous driving, etc., camera calibration is essential. In this study, we present a unique method for predicting intrinsic (principal point offset and focal length) and extrinsic (baseline, pitch, and translation) properties from a pair of images. We suggested a novel method where camera model equations are represented as a neural network in a multi-task learning framework, in contrast to existing methods, which build a comprehensive solution. By reconstructing the 3D points using a camera model neural network and then using the loss in reconstruction to obtain the camera specifications, this innovative camera projection loss (CPL) method allows us that the desired parameters should be estimated. As far as we are aware, our approach is the first one that uses an approach to multi-task learning that includes mathematical formulas in a framework for learning to estimate camera parameters to predict both the extrinsic and intrinsic parameters jointly. Additionally, we provided a new dataset named as CVGL Camera Calibration Dataset [1] which has been collected using the CARLA Simulator [2]. Actually, we show that our suggested strategy out performs both conventional methods and methods based on deep learning on 8 out of 10 parameters that were assessed using both real and synthetic data. Our code and generated dataset are available at https://github.com/thanif/Camera-Calibration-through-Camera-Projection-Loss.
translated by 谷歌翻译
我们研究了顺序预测和在线minimax遗憾的问题,并在一般损失函数下具有随机生成的特征。我们介绍了一个预期的最坏情况下的概念minimax遗憾,它概括并涵盖了先前已知的minimax遗憾。对于这种极匹马的遗憾,我们通过随机全局顺序覆盖的新颖概念建立了紧密的上限。我们表明,对于VC-Dimension $ \ Mathsf {Vc} $和$ I.I.D. $生成的长度$ t $的假设类别,随机全局顺序覆盖的基数可以在上限上限制高概率(WHP) e^{o(\ mathsf {vc} \ cdot \ log^2 t)} $。然后,我们通过引入一种称为Star-Littlestone维度的新复杂度度量来改善这种束缚,并显示与Star-Littlestone dimension $ \ Mathsf {Slsf {sl} $类别的类别允许订单的随机全局顺序覆盖$ e^{o(\ Mathsf) {sl} \ cdot \ log t)} $。我们进一步建立了具有有限脂肪的数字的真实有价值类的上限。最后,通过应用固定设计的Minimax遗憾的信息理论工具,我们为预期的最坏情况下的Minimax遗憾提供了下限。我们通过在预期的最坏情况下对对数损失和一般可混合损失的遗憾建立紧密的界限来证明我们的方法的有效性。
translated by 谷歌翻译
由于其定量优点和高灵敏度,位置排放断层扫描(PET)被广泛用于诊所和研究中,但遭受了低信噪比(SNR)的侵害。最近,卷积神经网络(CNN)已被广泛用于提高宠物图像质量。尽管在局部特征提取方面取得了成功和有效的效率,但由于其接受场有限,CNN无法很好地捕获远距离依赖性。全球多头自我注意力(MSA)是捕获远程信息的流行方法。但是,3D图像的全局MSA计算具有较高的计算成本。在这项工作中,我们提出了一个有效的空间和渠道编码器变压器Spach Transformer,可以基于本地和全局MSA来利用空间和渠道信息。基于不同宠物示踪剂数据集的实验,即$^{18} $ f-fdg,$^{18} $ f-acbc,$^{18} $ f-dcfpyl,$ f-dcfpyl和$^{68} $ ga--进行了Dotatate,以评估提出的框架。定量结果表明,所提出的SPACH变压器可以比其他参考方法获得更好的性能。
translated by 谷歌翻译
多年来,卷积神经网络(CNN)已成为多种计算机视觉任务的事实上的标准。尤其是,基于开创性体系结构(例如具有跳过连接的U形模型)或具有金字塔池的Artous卷积的深度神经网络已针对广泛的医学图像分析任务量身定制。此类架构的主要优点是它们容易拘留多功能本地功能。然而,作为一般共识,CNN无法捕获由于卷积操作的固有性能的内在特性而捕获长期依赖性和空间相关性。另外,从全球信息建模中获利的变压器源于自我发项机制,最近在自然语言处理和计算机视觉方面取得了出色的表现。然而,以前的研究证明,局部和全局特征对于密集预测的深层模型至关重要,例如以不同的形状和配置对复杂的结构进行分割。为此,本文提出了TransDeeplab,这是一种新型的DeepLab样纯变压器,用于医学图像分割。具体而言,我们用移动的窗口利用层次旋转式变形器来扩展DeepLabV3并建模非常有用的空间金字塔池(ASPP)模块。对相关文献的彻底搜索结果是,我们是第一个用基于纯变压器模型对开创性DeepLab模型进行建模的人。关于各种医学图像分割任务的广泛实验证明,我们的方法在视觉变压器和基于CNN的方法的合并中表现出色或与大多数当代作品相提并论,并显着降低了模型复杂性。代码和训练有素的模型可在https://github.com/rezazad68/transdeeplab上公开获得
translated by 谷歌翻译
在当今智能网络物理系统时代,由于它们在复杂的现实世界应用中的最新性能,深度神经网络(DNN)已无处不在。这些网络的高计算复杂性转化为增加的能源消耗,这是在资源受限系统中部署大型DNN的首要障碍。通过培训后量化实现的定点(FP)实现通常用于减少这些网络的能源消耗。但是,FP中的均匀量化间隔将数据结构的位宽度限制为大值,因为需要以足够的分辨率来表示大多数数字并避免较高的量化误差。在本文中,我们利用了关键见解,即(在大多数情况下)DNN的权重和激活主要集中在零接近零,只有少数几个具有较大的幅度。我们提出了Conlocnn,该框架是通过利用来实现节能低精度深度卷积神经网络推断的框架:(1)重量的不均匀量化,以简化复杂的乘法操作的简化; (2)激活值之间的相关性,可以在低成本的情况下以低成本进行部分补偿,而无需任何运行时开销。为了显着从不均匀的量化中受益,我们还提出了一种新颖的数据表示格式,编码低精度二进制签名数字,以压缩重量的位宽度,同时确保直接使用编码的权重来使用新颖的多重和处理 - 积累(MAC)单元设计。
translated by 谷歌翻译
在过去的几年中,卷积神经网络(CNN),尤其是U-NET,一直是医学图像处理时代的流行技术。具体而言,开创性的U-NET及其替代方案成功地设法解决了各种各样的医学图像分割任务。但是,这些体系结构在本质上是不完美的,因为它们无法表现出长距离相互作用和空间依赖性,从而导致具有可变形状和结构的医学图像分割的严重性能下降。针对序列到序列预测的初步提议的变压器已成为替代体系结构,以精确地模拟由自我激进机制辅助的全局信息。尽管设计了可行的设计,但利用纯变压器来进行图像分割目的,可能导致限制的定位容量,导致低级功能不足。因此,一系列研究旨在设计基于变压器的U-NET的强大变体。在本文中,我们提出了Trans-Norm,这是一种新型的深层分割框架,它随同将变压器模块合并为标准U-NET的编码器和跳过连接。我们认为,跳过连接的方便设计对于准确的分割至关重要,因为它可以帮助扩展路径和收缩路径之间的功能融合。在这方面,我们从变压器模块中得出了一种空间归一化机制,以适应性地重新校准跳过连接路径。对医学图像分割的三个典型任务进行了广泛的实验,证明了透气的有效性。代码和训练有素的模型可在https://github.com/rezazad68/transnorm上公开获得。
translated by 谷歌翻译