卫星图像构成了许多现实世界应用的高价和丰富的资源。但是,训练大多数机器学习模型所需的标签数据稀缺且难以获得。在这种情况下,当前的工作研究了一种完全无监督的方法,鉴于卫星图像的时间顺序,根据其语义属性及其随着时间的推移的进化而形成了地面的分区。图像序列被翻译成嵌入式瓷砖的多元时间序列的网格。这些瓷砖序列的嵌入和分区聚类以两个迭代步骤构造:在第一步中,嵌入能够根据地理位置邻域提取瓷砖序列的信息,将瓷砖分组为群集。在第二步中,通过使用簇定义的邻域来完善嵌入,并获得了瓷砖序列的最终聚类。我们通过进行纳瓦拉(Navarra)区域的20个卫星图像的序列(西班牙)的序列进行语义聚类来说明方法。结果表明,多元时间序列的聚类非常健壮,并且包含有关研究区域的信任时空语义信息。我们揭示了地理和嵌入式空间之间存在的紧密连接,并发现归因于这些类型的嵌入的语义属性被完全利用,甚至通过提议的时间序列的聚类来增强。
translated by 谷歌翻译
在全球范围内消除语言障碍的目标的驱动下,机器翻译已巩固自己是当今人工智能研究的关键重点。但是,这样的努力围绕着一小部分语言结合在一起,留下了绝大多数低资源的语言。在确保安全,高质量的结果的同时,在牢记道德考虑的同时,打破200个语言障碍需要什么?没有留下的语言,我们首先通过与母语人士的探索性访谈来解决对低资源语言翻译支持的必要性来应对这一挑战。然后,我们创建了旨在缩小低资源和高资源语言之间的性能差距的数据集和模型。更具体地说,我们开发了一种有条件的计算模型,基于专家的稀疏混合物,该模型经过针对针对低资源语言量身定制的新颖有效的数据挖掘技术培训的。我们提出了多次建筑和培训改进,以抵消数千个任务的培训。至关重要的是,我们使用人类翻译的基准,Flores-200评估了40,000多种不同的翻译方向的性能,并将人类评估与新型毒性基准相结合,涵盖Flores-200的所有语言,以评估翻译安全性。我们的模型相对于先前的最新技术,实现了44%BLEU的改善,为实现通用翻译系统奠定了重要的基础。最后,我们开源此工作中描述的所有贡献,可在https://github.com/facebookresearch/fairseq/tree/nllb上访问。
translated by 谷歌翻译
We study stochastic monotone inclusion problems, which widely appear in machine learning applications, including robust regression and adversarial learning. We propose novel variants of stochastic Halpern iteration with recursive variance reduction. In the cocoercive -- and more generally Lipschitz-monotone -- setup, our algorithm attains $\epsilon$ norm of the operator with $\mathcal{O}(\frac{1}{\epsilon^3})$ stochastic operator evaluations, which significantly improves over state of the art $\mathcal{O}(\frac{1}{\epsilon^4})$ stochastic operator evaluations required for existing monotone inclusion solvers applied to the same problem classes. We further show how to couple one of the proposed variants of stochastic Halpern iteration with a scheduled restart scheme to solve stochastic monotone inclusion problems with ${\mathcal{O}}(\frac{\log(1/\epsilon)}{\epsilon^2})$ stochastic operator evaluations under additional sharpness or strong monotonicity assumptions.
translated by 谷歌翻译
在线学习中,随机数据和对抗性数据是两个广泛研究的设置。但是许多优化任务都不是I.I.D.也不完全对抗,这使得对这些极端之间的世界有更好的理论理解具有根本的利益。在这项工作中,我们在在随机I.I.D.之间插值的环境中建立了在线凸优化的新颖遗憾界限。和完全的对抗损失。通过利用预期损失的平滑度,这些边界用梯度的方差取代对最大梯度长度的依赖,这是以前仅以线性损失而闻名的。此外,它们削弱了I.I.D.假设通过允许对抗中毒的回合,以前在专家和强盗设置中考虑过。我们的结果将其扩展到在线凸优化框架。在完全I.I.D.中情况,我们的界限与随机加速的结果相匹配,并且在完全对抗的情况下,它们优雅地恶化以符合Minimax的遗憾。我们进一步提供了下限,表明所有中级方案的遗憾上限都很紧张,从随机方差和损失梯度的对抗变异方面。
translated by 谷歌翻译
我们研究了凸面和非凸面设置的差异私有随机优化。对于凸面的情况,我们专注于非平滑通用线性损耗(GLL)的家庭。我们的$ \ ell_2 $ setting算法在近线性时间内实现了最佳的人口风险,而最知名的差异私有算法在超线性时间内运行。我们的$ \ ell_1 $ setting的算法具有近乎最佳的人口风险$ \ tilde {o} \ big(\ sqrt {\ frac {\ log {n \ log {d}} {n \ varepsilon} \ big)$,以及避免\ Cite {ASI:2021}的尺寸依赖性下限为一般非平滑凸损耗。在差别私有的非凸面设置中,我们提供了几种新算法,用于近似居住的人口风险。对于具有平稳损失和多面体约束的$ \ ell_1 $ tuce,我们提供第一个近乎尺寸的独立速率$ \ tilde o \ big(\ frac {\ log ^ {2/3} {d}} {{(n \ varepsilon)^ {1/3}}} \大)在线性时间。对于具有平滑损耗的约束$ \ ell_2 $ -case,我们获得了速率$ \ tilde o \ big(\ frac {1} {n ^ {1/3}} + \ frac {d ^ { 1/5}} {(n \ varepsilon)^ {2/5}} \ big)$。最后,对于$ \ ell_2 $ -case,我们为{\ em非平滑弱凸}的第一种方法提供了速率$ \ tilde o \ big(\ frac {1} {n ^ {1/4}} + \ FRAC {D ^ {1/6}} {(n \ varepsilon)^ {1/3}} \ big)$,它在$ d = o(\ sqrt {n})时匹配最好的现有非私有算法$。我们还将上面的所有结果扩展到Non-Convex $ \ ell_2 $ setting到$ \ ell_p $ setting,其中$ 1 <p \ leq 2 $,只有polylogarithmic(维度在尺寸)的速度下。
translated by 谷歌翻译