我们提出了一个新的图神经网络(GNN)模块,该模块基于最近提出的几何散射变换的松弛,该变换由图形小波滤波器组成。我们可学习的几何散射(腿)模块可以使小波的自适应调整能够鼓励乐队通道特征在学习的表示中出现。与许多流行的GNN相比,我们的腿部模块在GNN中的结合能够学习长期图形关系,这些GNN通常依赖于邻居之间的平滑度或相似性来编码图形结构。此外,与竞争性GNN相比,其小波先验会导致简化的架构,学到的参数明显少得多。我们证明了基于腿的网络在图形分类基准上的预测性能,以及在生化图数据探索任务中学到的功能的描述性质量。我们的结果表明,基于腿部的网络匹配或匹配流行的GNN,以及在许多数据集上,尤其是在生化域中的原始几何散射结构,同时保留了手工制作的(非学习)几何散射的某些数学特性。
translated by 谷歌翻译
在这里,我们提出了一种称为歧管插值最佳传输流量(MIOFLOW)的方法,该方法从零星时间点上采集的静态快照样品中学习随机,连续的种群动力学。 Mioflow结合了动态模型,流动学习和通过训练神经普通微分方程(神经ode)的最佳运输,以在静态种群快照之间插值,以通过具有歧管地面距离的最佳运输来惩罚。此外,我们通过在自动编码器的潜在空间中运行我们称为Geodesic AutoCododer(GAE)来确保流量遵循几何形状。在GAE中,正规化了点之间的潜在空间距离,以匹配我们定义的数据歧管上的新型多尺度测量距离。我们表明,这种方法优于正常流,Schr \“ Odinger Bridges和其他旨在根据人群之间插值的噪声流向数据的生成模型。从理论上讲,我们将这些轨迹与动态最佳运输联系起来。我们评估了我们的评估使用分叉和合并的模拟数据,以及来自胚胎身体分化和急性髓样白血病的SCRNA-SEQ数据。
translated by 谷歌翻译
基于1-HOP邻居之间的消息传递(MP)范式交换信息的图形神经网络(GNN),以在每一层构建节点表示。原则上,此类网络无法捕获在图形上学习给定任务的可能或必需的远程交互(LRI)。最近,人们对基于变压器的图的开发产生了越来越多的兴趣,这些方法可以考虑超出原始稀疏结构以外的完整节点连接,从而实现了LRI的建模。但是,仅依靠1跳消息传递的MP-gnn与位置特征表示形式结合使用时通常在几个现有的图形基准中表现得更好,因此,限制了Transferter类似体系结构的感知效用和排名。在这里,我们介绍了5个图形学习数据集的远程图基准(LRGB):Pascalvoc-SP,Coco-SP,PCQM-Contact,Peptides-Func和肽结构,可以说需要LRI推理以在给定的任务中实现强大的性能。我们基准测试基线GNN和Graph Transformer网络,以验证捕获长期依赖性的模型在这些任务上的性能明显更好。因此,这些数据集适用于旨在捕获LRI的MP-GNN和Graph Transformer架构的基准测试和探索。
translated by 谷歌翻译
图形神经网络(GNNS)通过考虑其内在的几何形状来扩展神经网络的成功到图形结构化数据。尽管根据图表学习基准的集合,已经对开发具有卓越性能的GNN模型进行了广泛的研究,但目前尚不清楚其探测给定模型的哪些方面。例如,他们在多大程度上测试模型利用图形结构与节点特征的能力?在这里,我们开发了一种原则性的方法来根据$ \ textit {敏感性配置文件} $进行基准测试数据集,该方法基于由于图形扰动的集合而导致的GNN性能变化了多少。我们的数据驱动分析提供了对GNN利用哪些基准测试数据特性的更深入的了解。因此,我们的分类法可以帮助选择和开发适当的图基准测试,并更好地评估未来的GNN方法。最后,我们在$ \ texttt {gtaxogym} $软件包中的方法和实现可扩展到多个图形预测任务类型和未来数据集。
translated by 谷歌翻译
在不同工具或条件对给定现象的研究产生不同但相关的领域的情况下,多模式数据的整合提出了挑战。许多现有的数据集成方法假设整个数据集的域之间的一对一对应关系可能是不现实的。此外,现有的流形比对方法不适合数据包含特定区域区域的情况,即,对于其他域中的某个数据,没有一个对应物。我们提出了扩散传输对准(DTA),这是一种半监督的歧管比对方法,该方法利用仅几个点之间的先前对应知识来对齐域。通过构建扩散过程,DTA找到了从具有不同特征空间的两个异质域测量的数据之间的运输计划,通过假设,它们共享来自相同基础数据生成过程的相似几何结构。 DTA还可以以数据驱动的方式计算部分对齐,从而在仅在一个域中测量某些数据时会准确对齐。我们从经验上证明,DTA在该半监视设置中对齐多模式数据中的其他方法优于其他方法。我们还从经验上表明,DTA获得的对齐方式可以改善机器学习任务的性能,例如域适应性,域间特征映射和探索性数据分析,同时表现优于竞争方法。
translated by 谷歌翻译
We propose a geometric scattering-based graph neural network (GNN) for approximating solutions of the NP-hard maximum clique (MC) problem. We construct a loss function with two terms, one which encourages the network to find highly connected nodes and the other which acts as a surrogate for the constraint that the nodes form a clique. We then use this loss to train an efficient GNN architecture that outputs a vector representing the probability for each node to be part of the MC and apply a rule-based decoder to make our final prediction. The incorporation of the scattering transform alleviates the so-called oversmoothing problem that is often encountered in GNNs and would degrade the performance of our proposed setup. Our empirical results demonstrate that our method outperforms representative GNN baselines in terms of solution accuracy and inference speed as well as conventional solvers like Gurobi with limited time budgets. Furthermore, our scattering model is very parameter efficient with only $\sim$ 0.1\% of the number of parameters compared to previous GNN baseline models.
translated by 谷歌翻译
我们提出了一个食谱,讲述了如何建立具有线性复杂性和最先进的结果的一般,功能可扩展的(GPS)图形变压器,并在各种基准测试基准上。 Graph Transformers(GTS)在图形表示学习领域中获得了多种近期出版物的知名度,但它们对构成良好的位置或结构编码的共同基础以及与众不同的区别。在本文中,我们总结了具有更清晰的定义的不同类型的编码,并将其分类为$ \ textit {local} $,$ \ textit {global} $或$ \ textit {fextit {ferseal} $。此外,GTS仍被限制在具有数百个节点的小图上,我们提出了第一个具有复杂性线性的体系结构对节点和边缘$ O(n+e)$的数量,通过将局部实质汇总从完全 - 连接的变压器。我们认为,这种解耦并不会对表现性产生负面影响,而我们的体系结构是图形的通用函数近似器。我们的GPS配方包括选择3种主要成分:(i)位置/结构编码,(ii)局部消息通讯机制和(iii)全局注意机制。我们构建和开源一个模块化框架$ \ textit {graphgps} $,该{GraphGps} $支持多种类型的编码,并且在小图和大图中提供效率和可扩展性。我们在11个基准测试上测试了我们的体系结构,并对所有这些基准显示出非常具竞争力的结果,展示了由模块化和不同策略组合获得的经验益处。
translated by 谷歌翻译
几何深度学习取得了长足的进步,旨在概括从传统领域到非欧几里得群岛的结构感知神经网络的设计,从而引起图形神经网络(GNN),这些神经网络(GNN)可以应用于形成的图形结构数据,例如社会,例如,网络,生物化学和材料科学。尤其是受欧几里得对应物的启发,尤其是图形卷积网络(GCN)通过提取结构感知功能来成功处理图形数据。但是,当前的GNN模型通常受到各种现象的限制,这些现象限制了其表达能力和推广到更复杂的图形数据集的能力。大多数模型基本上依赖于通过本地平均操作对图形信号的低通滤波,从而导致过度平滑。此外,为了避免严重的过度厚度,大多数流行的GCN式网络往往是较浅的,并且具有狭窄的接收场,导致侵犯。在这里,我们提出了一个混合GNN框架,该框架将传统的GCN过滤器与通过几何散射定义的带通滤波器相结合。我们进一步介绍了一个注意框架,该框架允许该模型在节点级别上从不同过滤器的组合信息进行本地参与。我们的理论结果确定了散射过滤器的互补益处,以利用图表中的结构信息,而我们的实验显示了我们方法对各种学习任务的好处。
translated by 谷歌翻译
我们在自我神经调节任务中获得了一个人的学习进步的个人签名,由功能MRI(FMRI)为指导。签名基于在第一节中给定第二神经融合会话中Amygdala的活性。该预测由深神经网络进行,这是在整个培训队训练的患者的培训。该信号,其指示人在执行Amygdala调制任务方面的进步,在多个原型脑状态中聚集,然后通过线性分类器对各种个人和临床适应症进行分类。所获得的签名的预测力比以前从FMRI神经融合获得个人签名的方法更强,并且提供了人的学习模式可以用作诊断工具的指示。我们的代码已提供,并通过道德批准,共享数据。
translated by 谷歌翻译
嵌入或可视化临床患者数据的主要挑战是可变类型的异质性,包括连续实验室值,分类诊断代码以及缺失或不完整的数据。特别地,在EHR数据中,一些变量是{\ EM缺失而不是随机(MNAR)}但故意没有收集,因此是信息来源。例如,在疑似诊断的基础上,某些患者可能认为实验室测试是必要的,但不适用于其他患者。在这里,我们呈现壁画林 - 一个无监督的随机森林,用于代表具有不同变量类型的数据(例如,分类,连续,mnar)。壁画森林由一组决策树组成,其中随机选择节点分裂变量,使得所有其他变量的边缘熵由分裂最小化。这允许我们在与连续变量一致的方式中也拆分在Mnar变量和离散变量上。最终目标是学习使用这些患者之间的平均树距离的患者的壁画嵌入。这些距离可以馈送到非线性维度减少方法,如phate,以获得可视化的嵌入。虽然这种方法在连续值的数据集中普遍存在(如单细胞RNA测序)中,但它们尚未在混合可变数据中广泛使用。我们展示在一个人工和两个临床数据集上使用我们的方法。我们表明,使用我们的方法,我们可以比竞争方法更准确地对数据进行可视化和分类数据。最后,我们表明壁画也可用于通过最近提出的树木切片的Wassersein距离比较患者的群组。
translated by 谷歌翻译