在此贡献中,我们使用一种合奏深度学习方法来组合两个单个单阶段探测器(即Yolov4和Yolact)的预测,目的是检测内窥镜图像中的伪像。这种整体策略使我们能够改善各个模型的鲁棒性,而无需损害其实时计算功能。我们通过训练和测试两个单独的模型和各种集合配置在“内窥镜伪影检测挑战”数据集中证明了方法的有效性。广泛的实验表明,在平均平均精度方面,合奏方法比单个模型和以前的作品的优越性。
translated by 谷歌翻译
This contribution presents a deep learning method for the extraction and fusion of information relating to kidney stone fragments acquired from different viewpoints of the endoscope. Surface and section fragment images are jointly used during the training of the classifier to improve the discrimination power of the features by adding attention layers at the end of each convolutional block. This approach is specifically designed to mimic the morpho-constitutional analysis performed in ex-vivo by biologists to visually identify kidney stones by inspecting both views. The addition of attention mechanisms to the backbone improved the results of single view extraction backbones by 4% on average. Moreover, in comparison to the state-of-the-art, the fusion of the deep features improved the overall results up to 11% in terms of kidney stone classification accuracy.
translated by 谷歌翻译
气道分割对于检查,诊断和预后的肺部疾病至关重要,而其手动描述则不当。为了减轻这种耗时且潜在的主观手动程序,研究人员提出了从计算机断层扫描(CT)图像自动分割气道的方法。但是,一些小型气道分支(例如,支气管和终末支气管)显着加剧了通过机器学习模型的自动分割难度。特别是,气道分支中体素值和严重的数据失衡的方差使计算模块容易导致不连续和假阴性预测。注意机制表明了分割复杂结构的能力,而模糊逻辑可以减少特征表示的不确定性。因此,由模糊注意力层给出的深度注意力网络和模糊理论的整合应该是升级的解决方案。本文提出了一种有效的气道分割方法,包括一个新型的模糊注意力神经网络和全面的损失函数,以增强气道分割的空间连续性。深层模糊集由特征图中的一组体素和可学习的高斯成员功能制定。与现有的注意机制不同,所提出的特异性模糊注意力解决了不同渠道中异质特征的问题。此外,提出了一种新的评估指标来评估气道结构的连续性和完整性。该方法的效率已通过在包括精确的09和LIDC数据集在内的开放数据集上进行测试,以及我们的内部Covid-19和纤维化肺病数据集证明了这一建议的效率。
translated by 谷歌翻译
可以使用具有快速有效分割网络的深度学习方法来实施医疗图像分割。单板计算机(SBC)由于内存和处理限制而难以用于训练深网。诸如Google Edge TPU之类的特定硬件使其适合使用复杂的预训练网络进行实时预测。在这项工作中,我们研究了两个SBC的性能,具有和不进行硬件加速度进行底面图像分割,尽管这项研究的结论可以通过其他类型的医学图像的深层神经网络应用于分割。为了测试硬件加速的好处,我们使用先前已发布的工作中的网络和数据集,并通过使用具有超声甲状腺图像的数据集进行测试来概括它们。我们在SBC中测量预测时间,并将其与基于云的TPU系统进行比较。结果表明,使用Edge TPU,机器学习加速SBC的可行性可加速光盘和杯赛分段,每图像可获得低于25毫秒的时间。
translated by 谷歌翻译
卷积和复发性神经网络的结合是一个有希望的框架,它允许提取高质量时空特征以及其时间依赖性,这是时间序列预测问题(例如预测,分类或异常检测)的关键。在本文中,引入了TSFEDL库。它通过使用卷积和经常性的深神经网络来编译20种时间序列提取和预测的最先进方法,用于在多个数据挖掘任务中使用。该库是建立在AGPLV3许可下的一组TensorFlow+Keras和Pytorch模块上的。本提案中包含的架构的性能验证证实了此Python软件包的有用性。
translated by 谷歌翻译
通过提供流动性,市场制造商在金融市场中发挥着关键作用。他们通常填写订单书籍,以购买和出售限额订单,以便为交易员提供替代价格水平来运营。本文精确地侧重于从基于代理人的角度研究这些市场制造商战略的研究。特别是,我们提出了加强学习(RL)在模拟股市中创建智能市场标志的应用。本研究分析了RL市场制造商代理在非竞争性(同时只有一个RL市场制造商学习)和竞争方案(同时学习的多个RL市场标记)以及如何调整其在SIM2REAL范围内的策略有很有趣的结果。此外,它涵盖了不同实验之间的政策转移的应用,描述了竞争环境对RL代理表现的影响。 RL和Deep RL技术被证明是有利可图的市场制造商方法,从而更好地了解他们在股票市场的行为。
translated by 谷歌翻译
我们寻求基于8,380临床验证样品的咳嗽声,评估Covid-19的快速初级筛查工具的检测性能,从8,380临床验证的样品进行实验室分子测试(2,339 Covid-19阳性和6,041个Covid-19负面)。根据患者的定量RT-PCR(QRT-PCR)分析,循环阈值和淋巴细胞计数,根据结果和严重程度临床标记样品。我们所提出的通用方法是一种基于经验模式分解(EMD)的算法,其随后基于音频特征的张量和具有称为Deplecough的卷积层的深层人工神经网络分类器的分类。基于张量尺寸的数量,即DepeCough2D和DeepCOUGH3D,两种不同版本的深度。这些方法已部署在多平台概念验证Web应用程序CoughDetect中以匿名管理此测试。 Covid-19识别结果率达到了98.800.83%,敏感性为96.431.85%的有前途的AUC(面积),特异性为96.201.74%,81.08%5.05%AUC,用于识别三个严重程度。我们提出的Web工具和支持稳健,快速,需要Covid-19的需求识别的基础算法有助于快速检测感染。我们认为,它有可能大大妨碍世界各地的Covid-19大流行。
translated by 谷歌翻译
在本文中,我们开发FaceQVEC,一种软件组件,用于估计ISO / IEC 19794-5中所考虑的每个要点的面部图像的符合性,这是一个质量标准,该标准定义了将它们可接受或不可接受的面部图像的一般质量指南用于官方文件,如护照或身份证。这种质量评估的工具可以有助于提高面部识别的准确性,并确定哪些因素影响给定的面部图像的质量,并采取行动消除或减少这些因素,例如,具有后处理技术或重新获取图像。 FaceQVEC由与上述标准中预期的不同点相关的25个单独测试的自动化,以及被认为与面部质量有关的图像的其他特征。我们首先包括在现实条件下捕获的开发数据集上评估的质量测试的结果。我们使用这些结果来调整每个测试的判定阈值。然后,我们再次在评估数据库中再次检查,该评估数据库包含在开发期间未见的新脸部图像。评估结果展示了个人测试的准确性,用于检查遵守ISO / IEC 19794-5。 Faceqvec可在线获取(https://github.com/uam-biometrics/faceqvec)。
translated by 谷歌翻译
Covid-19(2019年冠状病毒病)的爆发改变了世界。根据世界卫生组织(WHO)的说法,已确认有超过1亿个COVID案件,其中包括超过240万人死亡。早期发现该疾病非常重要,并且已证明使用医学成像,例如胸部X射线(CXR)和胸部计算机断层扫描(CCT)是一个极好的解决方案。但是,此过程要求临床医生在手动和耗时的任务中进行此操作,这在试图加快诊断加快时并不理想。在这项工作中,我们提出了一个基于概率支持向量机(SVM)的集成分类器,以识别肺炎模式,同时提供有关分类可靠性的信息。具体而言,将每个CCT扫描分为立方斑块,并且每个CCT扫描中包含的特征都通过应用核PCA提取。在合奏中使用基本分类器使我们的系统能够识别肺炎模式,无论其尺寸或位置如何。然后,根据每个单个分类的可靠性,将每个单独的贴片的决策组合成一个全局:不确定性越低,贡献越高。在实际情况下评估性能,准确度为97.86%。获得的大型性能和系统的简单性(在CCT图像中使用深度学习将导致巨大的计算成本)证明我们的建议在现实世界中的适用性。
translated by 谷歌翻译
In the last few years, Artificial Intelligence (AI) has achieved a notable momentum that, if harnessed appropriately, may deliver the best of expectations over many application sectors across the field. For this to occur shortly in Machine Learning, the entire community stands in front of the barrier of explainability, an inherent problem of the latest techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI (namely, expert systems and rule based models). Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is widely acknowledged as a crucial feature for the practical deployment of AI models. The overview presented in this article examines the existing literature and contributions already done in the field of XAI, including a prospect toward what is yet to be reached. For this purpose we summarize previous efforts made to define explainability in Machine Learning, establishing a novel definition of explainable Machine Learning that covers such prior conceptual propositions with a major focus on the audience for which the explainability is sought. Departing from this definition, we propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at explaining Deep Learning methods for which a second dedicated taxonomy is built and examined in detail. This critical literature analysis serves as the motivating background for a series of challenges faced by XAI, such as the interesting crossroads of data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to the field of XAI with a thorough taxonomy that can serve as reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.
translated by 谷歌翻译