我们通过投影仪操作员研究较大尺寸的连续动态系统的嵌入。我们称这种技术PED,动态系统的投影嵌入,因为动态的稳定固定点通过从较高尺寸空间的投影回收。在本文中,我们提供了一种通用定义,并证明对于特定类型的Rank-1的投影仪操作者,均匀的平均场投影仪,运动方程成为动态系统的平均场逼近。虽然一般来说,嵌入取决于指定的变量排序,但对于均匀平均字段投影仪而不是真的。此外,我们证明原始稳定的固定点保持稳定的动态的定点,鞍点保持鞍座,但不稳定的固定点变成马鞍。
translated by 谷歌翻译
简单的动态模型可以在大型网络中产生复杂的行为。这些行为通常可以在由网络网络捕获的各种物理系统中观察到。在这里,我们描述了一种现象,其中尺寸自始终产生由于动力学不稳定性而产生的力场。这可以被理解为在有效潜力的最小值之间的不稳定(“隆隆声”)隧道机构。我们将该集体和非触发效果成为“Lyapunov力”,即使完整系统具有与系统尺寸指数呈指数呈指数呈指数增长的均衡点的星座,使系统朝向全局最小的潜在功能。我们研究的系统具有简单的映射到流量网络,其等于电流驱动的映像器。该机制在纳米级物理学中对其物理相关性进行了吸引力,以及在优化中可能的应用,新颖的蒙特卡罗方案和机器学习。
translated by 谷歌翻译
储层计算是一种使用高维动力系统或\ emph {Reservoir}的机器学习范式,以近似和预测时间序列数据。可以通过从电子电路中构造储层来增强储层计算机的规模,速度和功率使用,并且一些实验研究证明了这一方向的希望。但是,设计质量储层需要精确理解此类电路如何处理和存储信息。我们分析了包括线性元件(电阻器,电感器和电容器)和称为MEMRISTOR的非线性记忆元件的电子储层的可行性和最佳设计。我们提供了有关这些储层的可行性的分析结果,并通过检查它们可以近似的输入输出关系的类型来对其计算属性进行系统的表征。这使我们能够设计具有最佳属性的储层。通过引入储层的总线性和非线性计算能力的衡量标准,我们能够设计其总计算能力随系统尺寸广泛规模的电子电路。我们的电子储层可以以可能直接在硬件中实现的形式匹配或超过常规“ Echo State Network”储层的性能。
translated by 谷歌翻译
Continual Learning (CL) is a field dedicated to devise algorithms able to achieve lifelong learning. Overcoming the knowledge disruption of previously acquired concepts, a drawback affecting deep learning models and that goes by the name of catastrophic forgetting, is a hard challenge. Currently, deep learning methods can attain impressive results when the data modeled does not undergo a considerable distributional shift in subsequent learning sessions, but whenever we expose such systems to this incremental setting, performance drop very quickly. Overcoming this limitation is fundamental as it would allow us to build truly intelligent systems showing stability and plasticity. Secondly, it would allow us to overcome the onerous limitation of retraining these architectures from scratch with the new updated data. In this thesis, we tackle the problem from multiple directions. In a first study, we show that in rehearsal-based techniques (systems that use memory buffer), the quantity of data stored in the rehearsal buffer is a more important factor over the quality of the data. Secondly, we propose one of the early works of incremental learning on ViTs architectures, comparing functional, weight and attention regularization approaches and propose effective novel a novel asymmetric loss. At the end we conclude with a study on pretraining and how it affects the performance in Continual Learning, raising some questions about the effective progression of the field. We then conclude with some future directions and closing remarks.
translated by 谷歌翻译
Computational units in artificial neural networks follow a simplified model of biological neurons. In the biological model, the output signal of a neuron runs down the axon, splits following the many branches at its end, and passes identically to all the downward neurons of the network. Each of the downward neurons will use their copy of this signal as one of many inputs dendrites, integrate them all and fire an output, if above some threshold. In the artificial neural network, this translates to the fact that the nonlinear filtering of the signal is performed in the upward neuron, meaning that in practice the same activation is shared between all the downward neurons that use that signal as their input. Dendrites thus play a passive role. We propose a slightly more complex model for the biological neuron, where dendrites play an active role: the activation in the output of the upward neuron becomes optional, and instead the signals going through each dendrite undergo independent nonlinear filterings, before the linear combination. We implement this new model into a ReLU computational unit and discuss its biological plausibility. We compare this new computational unit with the standard one and describe it from a geometrical point of view. We provide a Keras implementation of this unit into fully connected and convolutional layers and estimate their FLOPs and weights change. We then use these layers in ResNet architectures on CIFAR-10, CIFAR-100, Imagenette, and Imagewoof, obtaining performance improvements over standard ResNets up to 1.73%. Finally, we prove a universal representation theorem for continuous functions on compact sets and show that this new unit has more representational power than its standard counterpart.
translated by 谷歌翻译
Detecting anomalous data within time series is a very relevant task in pattern recognition and machine learning, with many possible applications that range from disease prevention in medicine, e.g., detecting early alterations of the health status before it can clearly be defined as "illness" up to monitoring industrial plants. Regarding this latter application, detecting anomalies in an industrial plant's status firstly prevents serious damages that would require a long interruption of the production process. Secondly, it permits optimal scheduling of maintenance interventions by limiting them to urgent situations. At the same time, they typically follow a fixed prudential schedule according to which components are substituted well before the end of their expected lifetime. This paper describes a case study regarding the monitoring of the status of Laser-guided Vehicles (LGVs) batteries, on which we worked as our contribution to project SUPER (Supercomputing Unified Platform, Emilia Romagna) aimed at establishing and demonstrating a regional High-Performance Computing platform that is going to represent the main Italian supercomputing environment for both computing power and data volume.
translated by 谷歌翻译
Recent object detection models for infrared (IR) imagery are based upon deep neural networks (DNNs) and require large amounts of labeled training imagery. However, publicly-available datasets that can be used for such training are limited in their size and diversity. To address this problem, we explore cross-modal style transfer (CMST) to leverage large and diverse color imagery datasets so that they can be used to train DNN-based IR image based object detectors. We evaluate six contemporary stylization methods on four publicly-available IR datasets - the first comparison of its kind - and find that CMST is highly effective for DNN-based detectors. Surprisingly, we find that existing data-driven methods are outperformed by a simple grayscale stylization (an average of the color channels). Our analysis reveals that existing data-driven methods are either too simplistic or introduce significant artifacts into the imagery. To overcome these limitations, we propose meta-learning style transfer (MLST), which learns a stylization by composing and tuning well-behaved analytic functions. We find that MLST leads to more complex stylizations without introducing significant image artifacts and achieves the best overall detector performance on our benchmark datasets.
translated by 谷歌翻译
Objective: Accurate visual classification of bladder tissue during Trans-Urethral Resection of Bladder Tumor (TURBT) procedures is essential to improve early cancer diagnosis and treatment. During TURBT interventions, White Light Imaging (WLI) and Narrow Band Imaging (NBI) techniques are used for lesion detection. Each imaging technique provides diverse visual information that allows clinicians to identify and classify cancerous lesions. Computer vision methods that use both imaging techniques could improve endoscopic diagnosis. We address the challenge of tissue classification when annotations are available only in one domain, in our case WLI, and the endoscopic images correspond to an unpaired dataset, i.e. there is no exact equivalent for every image in both NBI and WLI domains. Method: We propose a semi-surprised Generative Adversarial Network (GAN)-based method composed of three main components: a teacher network trained on the labeled WLI data; a cycle-consistency GAN to perform unpaired image-to-image translation, and a multi-input student network. To ensure the quality of the synthetic images generated by the proposed GAN we perform a detailed quantitative, and qualitative analysis with the help of specialists. Conclusion: The overall average classification accuracy, precision, and recall obtained with the proposed method for tissue classification are 0.90, 0.88, and 0.89 respectively, while the same metrics obtained in the unlabeled domain (NBI) are 0.92, 0.64, and 0.94 respectively. The quality of the generated images is reliable enough to deceive specialists. Significance: This study shows the potential of using semi-supervised GAN-based classification to improve bladder tissue classification when annotations are limited in multi-domain data.
translated by 谷歌翻译
Neural image classifiers are known to undergo severe performance degradation when exposed to input that exhibits covariate-shift with respect to the training distribution. Successful hand-crafted augmentation pipelines aim at either approximating the expected test domain conditions or to perturb the features that are specific to the training environment. The development of effective pipelines is typically cumbersome, and produce transformations whose impact on the classifier performance are hard to understand and control. In this paper, we show that recent Text-to-Image (T2I) generators' ability to simulate image interventions via natural-language prompts can be leveraged to train more robust models, offering a more interpretable and controllable alternative to traditional augmentation methods. We find that a variety of prompting mechanisms are effective for producing synthetic training data sufficient to achieve state-of-the-art performance in widely-adopted domain-generalization benchmarks and reduce classifiers' dependency on spurious features. Our work suggests that further progress in T2I generation and a tighter integration with other research fields may represent a significant step towards the development of more robust machine learning systems.
translated by 谷歌翻译
Visual language such as charts and plots is ubiquitous in the human world. Comprehending plots and charts requires strong reasoning skills. Prior state-of-the-art (SOTA) models require at least tens of thousands of training examples and their reasoning capabilities are still much limited, especially on complex human-written queries. This paper presents the first one-shot solution to visual language reasoning. We decompose the challenge of visual language reasoning into two steps: (1) plot-to-text translation, and (2) reasoning over the translated text. The key in this method is a modality conversion module, named as DePlot, which translates the image of a plot or chart to a linearized table. The output of DePlot can then be directly used to prompt a pretrained large language model (LLM), exploiting the few-shot reasoning capabilities of LLMs. To obtain DePlot, we standardize the plot-to-table task by establishing unified task formats and metrics, and train DePlot end-to-end on this task. DePlot can then be used off-the-shelf together with LLMs in a plug-and-play fashion. Compared with a SOTA model finetuned on more than >28k data points, DePlot+LLM with just one-shot prompting achieves a 24.0% improvement over finetuned SOTA on human-written queries from the task of chart QA.
translated by 谷歌翻译