We consider the constrained Linear Inverse Problem (LIP), where a certain atomic norm (like the $\ell_1 $ and the Nuclear norm) is minimized subject to a quadratic constraint. Typically, such cost functions are non-differentiable which makes them not amenable to the fast optimization methods existing in practice. We propose two equivalent reformulations of the constrained LIP with improved convex regularity: (i) a smooth convex minimization problem, and (ii) a strongly convex min-max problem. These problems could be solved by applying existing acceleration based convex optimization methods which provide better \mmode{ O \left( \nicefrac{1}{k^2} \right) } theoretical convergence guarantee. However, to fully exploit the utility of these reformulations, we also provide a novel algorithm, to which we refer as the Fast Linear Inverse Problem Solver (FLIPS), that is tailored to solve the reformulation of the LIP. We demonstrate the performance of FLIPS on the sparse coding problem arising in image processing tasks. In this setting, we observe that FLIPS consistently outperforms the Chambolle-Pock and C-SALSA algorithms--two of the current best methods in the literature.
translated by 谷歌翻译
Wireless Sensor Network (WSN) applications reshape the trend of warehouse monitoring systems allowing them to track and locate massive numbers of logistic entities in real-time. To support the tasks, classic Radio Frequency (RF)-based localization approaches (e.g. triangulation and trilateration) confront challenges due to multi-path fading and signal loss in noisy warehouse environment. In this paper, we investigate machine learning methods using a new grid-based WSN platform called Sensor Floor that can overcome the issues. Sensor Floor consists of 345 nodes installed across the floor of our logistic research hall with dual-band RF and Inertial Measurement Unit (IMU) sensors. Our goal is to localize all logistic entities, for this study we use a mobile robot. We record distributed sensing measurements of Received Signal Strength Indicator (RSSI) and IMU values as the dataset and position tracking from Vicon system as the ground truth. The asynchronous collected data is pre-processed and trained using Random Forest and Convolutional Neural Network (CNN). The CNN model with regularization outperforms the Random Forest in terms of localization accuracy with aproximate 15 cm. Moreover, the CNN architecture can be configured flexibly depending on the scenario in the warehouse. The hardware, software and the CNN architecture of the Sensor Floor are open-source under https://github.com/FLW-TUDO/sensorfloor.
translated by 谷歌翻译
对于工业规模的广告系统,对广告点击率(CTR)的预测是一个核心问题。广告点击构成了一类重要的用户参与,通常用作广告对用户有用的主要信号。此外,在每次点击收费的广告系统中,单击费用期望值直接输入价值估计。因此,对于大多数互联网广告公司而言,CTR模型开发是一项重大投资。此类问题的工程需要许多适合在线学习的机器学习(ML)技术,这些技术远远超出了传统的准确性改进,尤其是有关效率,可重复性,校准,信用归因。我们介绍了Google搜索广告CTR模型中部署的实用技术的案例研究。本文提供了一项行业案例研究,该研究强调了当前的ML研究的重要领域,并说明了如何评估有影响力的新ML方法并在大型工业环境中有用。
translated by 谷歌翻译
环境场景的重建对于自动机器人应用引起了极大的兴趣,因为必须准确表示环境以确保与机器人的安全互动。同样重要的是,确保机器人与其控制器之间的可靠通信也至关重要。大型智能表面(LIS)是一项由于其通信能力而被广泛研究的技术。此外,由于天线元件的数量,这些表面是无线电传感的有力解决方案。本文提出了一种新颖的方法,可以将LIS在其区域散布的散射器建造的室内环境中获得的无线电环境图转换为室内环境的平面图。利用了基于最小二乘(LS)的方法,U-NET(UN)和条件生成对抗网络(CGAN)来执行此任务。我们表明,可以使用本地和全球测量值正确重建平面图。
translated by 谷歌翻译
我们介绍360-DFPE,一个顺序楼层平面图估计方法,直接将360图像视为输入,而不依赖于有源传感器或3D信息。我们的方法利用单眼视觉SLAM解决方案和单眼360室布局方法之间的松散耦合集成,分别估计相机姿势和布局几何形状。由于我们的任务是使用单眼图像,整个场景结构,房间实例和房间形状顺序捕获平面图。为了解决这些挑战,我们首先通过制定熵最小化过程来处理视觉内径和布局几何形状之间的比例差异,这使我们能够直接对准360布局而不提前了解整个场景。其次,为了顺序识别各个房间,我们提出了一种新颖的室内识别算法,其使用几何信息沿着相机探索跟踪每个房间。最后,为了估算房间的最终形状,我们提出了一种最短的路径算法,具有迭代的粗细策略,这改善了具有更高精度和更快的运行时间的现有制剂。此外,我们收集一个具有具有挑战性的大型场景的新楼层规划数据集,提供了点云和顺序360图像信息。实验结果表明,我们的单眼解决方案实现了依赖于活动传感器的当前最先进的算法的良好性能,并提前要求整个场景重建数据。我们的代码和数据集将很快发布。
translated by 谷歌翻译
现实的3D室内场景数据集在计算机视觉,场景理解,自主导航和3D重建中启用了最近的最近进展。但是,现有数据集的规模,多样性和可定制性有限,并且扫描和注释更多的耗时和昂贵。幸运的是,组合者在我们方面:现有3D场景数据集有足够的个别房间,如果有一种方法可以将它们重新组合成新的布局。在本文中,我们提出了从现有3D房间生成新型3D平面图的任务。我们确定了这个问题的三个子任务:生成2D布局,检索兼容3D房间,以及3D房间的变形,以适应布局。然后,我们讨论解决问题的不同策略,设计两个代表性管道:一个使用可用的2D楼层计划,以指导3D房间的选择和变形;另一个学习检索一组兼容的3D房间,并将它们与新颖的布局相结合。我们设计一组指标,可评估所生成的结果与三个子任务中的每一个,并显示不同的方法在这些子任务上交易性能。最后,我们调查从生成的3D场景中受益的下游任务,并讨论选择最适合这些任务的需求的方法。
translated by 谷歌翻译