自从有新闻以来,假新闻一直存在,从谣言到印刷媒体再到广播电视。最近,信息时代及其沟通和互联网突破加剧了假新闻的传播。此外,除了电子商务外,当前的互联网经济取决于广告,视图和点击,这促使许多开发人员诱饵最终用户点击链接或广告。因此,假新闻通过社交媒体网络的狂野传播影响了现实世界中的问题,从选举到5G的采用以及Covid-19大流行的处理。自虚假新闻出现以来,从事实检查员到基于人工智能的探测器,探测和阻止假新闻的努力就一直存在。由于假新闻传播器采用了更复杂的技术,因此解决方案仍在不断发展。在本文中,R代码已用于研究和可视化现代假新闻数据集。我们使用聚类,分类,相关性和各种图来分析和呈现数据。该实验显示了分类器在与虚假新闻中分开的效率高效率。
translated by 谷歌翻译
Sentiment analysis or opinion mining help to illustrate the phrase NLP (Natural Language Processing). Sentiment analysis has been the most significant topic in recent years. The goal of this study is to solve the sentiment polarity classification challenges in sentiment analysis. A broad technique for categorizing sentiment opposition is presented, along with comprehensive process explanations. With the results of the analysis, both sentence-level classification and review-level categorization are conducted. Finally, we discuss our plans for future sentiment analysis research.
translated by 谷歌翻译
现有的抽象摘要模型缺乏明确的控制机制,允许用户影响模型输出的风格特征。这导致生成不迎合用户需求或偏好的通用摘要。为了解决这个问题,我们介绍了Hydrasum,这是一种新的摘要架构,其扩展了当前模型的单个解码器框架,例如, BART,到专家的混合版本,包括多个解码器。我们拟议的模型鼓励每个专家,即解码器,沿着尺寸学习和生成风格不同的摘要,例如抽象,长度,特异性等。在每个时间步骤中,Hydrasum采用一个门控机制,该机构决定每个单独解码器对下一个令牌的输出概率分布的贡献。通过对三个摘要数据集的实验(CNN,新闻编辑室,XSUM),我们证明了这种门控机制自动学习在标准培训目标下将对比摘要样式分配给不同的水路解码器,而无需额外监督。我们进一步表明,培训过程的指导版本可以明确地管理哪些摘要样式在解码器之间分区,例如,高抽象力与低吸引力或高特异性与低特异性,并且还增加各个解码器之间的致命差异。最后,我们的实验表明,我们的解码器框架非常灵活:在推理期间,我们可以从单独的解码器或解码器的不同子集的混合物中进行采样,以产生多种摘要,并强制对摘要生成的单一和多样式控制。
translated by 谷歌翻译
Recent work has shown the benefits of synthetic data for use in computer vision, with applications ranging from autonomous driving to face landmark detection and reconstruction. There are a number of benefits of using synthetic data from privacy preservation and bias elimination to quality and feasibility of annotation. Generating human-centered synthetic data is a particular challenge in terms of realism and domain-gap, though recent work has shown that effective machine learning models can be trained using synthetic face data alone. We show that this can be extended to include the full body by building on the pipeline of Wood et al. to generate synthetic images of humans in their entirety, with ground-truth annotations for computer vision applications. In this report we describe how we construct a parametric model of the face and body, including articulated hands; our rendering pipeline to generate realistic images of humans based on this body model; an approach for training DNNs to regress a dense set of landmarks covering the entire body; and a method for fitting our body model to dense landmarks predicted from multiple views.
translated by 谷歌翻译
To generate high quality rendering images for real time applications, it is often to trace only a few samples-per-pixel (spp) at a lower resolution and then supersample to the high resolution. Based on the observation that the rendered pixels at a low resolution are typically highly aliased, we present a novel method for neural supersampling based on ray tracing 1/4-spp samples at the high resolution. Our key insight is that the ray-traced samples at the target resolution are accurate and reliable, which makes the supersampling an interpolation problem. We present a mask-reinforced neural network to reconstruct and interpolate high-quality image sequences. First, a novel temporal accumulation network is introduced to compute the correlation between current and previous features to significantly improve their temporal stability. Then a reconstruct network based on a multi-scale U-Net with skip connections is adopted for reconstruction and generation of the desired high-resolution image. Experimental results and comparisons have shown that our proposed method can generate higher quality results of supersampling, without increasing the total number of ray-tracing samples, over current state-of-the-art methods.
translated by 谷歌翻译
In this paper we explore the task of modeling (semi) structured object sequences; in particular we focus our attention on the problem of developing a structure-aware input representation for such sequences. In such sequences, we assume that each structured object is represented by a set of key-value pairs which encode the attributes of the structured object. Given a universe of keys, a sequence of structured objects can then be viewed as an evolution of the values for each key, over time. We encode and construct a sequential representation using the values for a particular key (Temporal Value Modeling - TVM) and then self-attend over the set of key-conditioned value sequences to a create a representation of the structured object sequence (Key Aggregation - KA). We pre-train and fine-tune the two components independently and present an innovative training schedule that interleaves the training of both modules with shared attention heads. We find that this iterative two part-training results in better performance than a unified network with hierarchical encoding as well as over, other methods that use a {\em record-view} representation of the sequence \cite{de2021transformers4rec} or a simple {\em flattened} representation of the sequence. We conduct experiments using real-world data to demonstrate the advantage of interleaving TVM-KA on multiple tasks and detailed ablation studies motivating our modeling choices. We find that our approach performs better than flattening sequence objects and also allows us to operate on significantly larger sequences than existing methods.
translated by 谷歌翻译
In this chapter, we review and discuss the transformation of AI technology in HCI/UX work and assess how AI technology will change how we do the work. We first discuss how AI can be used to enhance the result of user research and design evaluation. We then discuss how AI technology can be used to enhance HCI/UX design. Finally, we discuss how AI-enabled capabilities can improve UX when users interact with computing systems, applications, and services.
translated by 谷歌翻译
Deep neural networks (DNNs) are vulnerable to a class of attacks called "backdoor attacks", which create an association between a backdoor trigger and a target label the attacker is interested in exploiting. A backdoored DNN performs well on clean test images, yet persistently predicts an attacker-defined label for any sample in the presence of the backdoor trigger. Although backdoor attacks have been extensively studied in the image domain, there are very few works that explore such attacks in the video domain, and they tend to conclude that image backdoor attacks are less effective in the video domain. In this work, we revisit the traditional backdoor threat model and incorporate additional video-related aspects to that model. We show that poisoned-label image backdoor attacks could be extended temporally in two ways, statically and dynamically, leading to highly effective attacks in the video domain. In addition, we explore natural video backdoors to highlight the seriousness of this vulnerability in the video domain. And, for the first time, we study multi-modal (audiovisual) backdoor attacks against video action recognition models, where we show that attacking a single modality is enough for achieving a high attack success rate.
translated by 谷歌翻译
Modern deep neural networks have achieved superhuman performance in tasks from image classification to game play. Surprisingly, these various complex systems with massive amounts of parameters exhibit the same remarkable structural properties in their last-layer features and classifiers across canonical datasets. This phenomenon is known as "Neural Collapse," and it was discovered empirically by Papyan et al. \cite{Papyan20}. Recent papers have theoretically shown the global solutions to the training network problem under a simplified "unconstrained feature model" exhibiting this phenomenon. We take a step further and prove the Neural Collapse occurrence for deep linear network for the popular mean squared error (MSE) and cross entropy (CE) loss. Furthermore, we extend our research to imbalanced data for MSE loss and present the first geometric analysis for Neural Collapse under this setting.
translated by 谷歌翻译
We present Second Thought, a new learning paradigm that enables language models (LMs) to re-align with human values. By modeling the chain-of-edits between value-unaligned and value-aligned text, with LM fine-tuning and additional refinement through reinforcement learning, Second Thought not only achieves superior performance in three value alignment benchmark datasets but also shows strong human-value transfer learning ability in few-shot scenarios. The generated editing steps also offer better interpretability and ease for interactive error correction. Extensive human evaluations further confirm its effectiveness.
translated by 谷歌翻译