Real-world applications often require learning continuously from a stream of data under ever-changing conditions. When trying to learn from such non-stationary data, deep neural networks (DNNs) undergo catastrophic forgetting of previously learned information. Among the common approaches to avoid catastrophic forgetting, rehearsal-based methods have proven effective. However, they are still prone to forgetting due to task-interference as all parameters respond to all tasks. To counter this, we take inspiration from sparse coding in the brain and introduce dynamic modularity and sparsity (Dynamos) for rehearsal-based general continual learning. In this setup, the DNN learns to respond to stimuli by activating relevant subsets of neurons. We demonstrate the effectiveness of Dynamos on multiple datasets under challenging continual learning evaluation protocols. Finally, we show that our method learns representations that are modular and specialized, while maintaining reusability by activating subsets of neurons with overlaps corresponding to the similarity of stimuli.
translated by 谷歌翻译
深神网络的对象探测器正在不断发展,并用于多种应用程序,每个应用程序都有自己的要求集。尽管关键安全应用需要高准确性和可靠性,但低延迟任务需要资源和节能网络。不断提出了实时探测器,在高影响现实世界中是必需的,但是它们过分强调了准确性和速度的提高,而其他功能(例如多功能性,鲁棒性,资源和能源效率)则被省略。现有网络的参考基准不存在,设计新网络的标准评估指南也不存在,从而导致比较模棱两可和不一致的比较。因此,我们对广泛的数据集进行了多个实时探测器(基于锚点,关键器和变压器)的全面研究,并报告了一系列广泛指标的结果。我们还研究了变量,例如图像大小,锚固尺寸,置信阈值和架构层对整体性能的影响。我们分析了检测网络的鲁棒性,以防止分配变化,自然腐败和对抗性攻击。此外,我们提供了校准分析来评估预测的可靠性。最后,为了强调现实世界的影响,我们对自动驾驶和医疗保健应用进行了两个独特的案例研究。为了进一步衡量关键实时应用程序中网络的能力,我们报告了在Edge设备上部署检测网络后的性能。我们广泛的实证研究可以作为工业界对现有网络做出明智选择的指南。我们还希望激发研究社区的设计和评估网络的新方向,该网络着重于更大而整体的概述,以实现深远的影响。
translated by 谷歌翻译
通过共享编码器和解码器而不是仅共享编码器,对密集预测任务的多任务学习提供了一种有吸引力的方面,以提高准确性和计算效率。当任务相似时,共享解码器将作为额外的归纳偏见,为任务提供更多的互补信息的空间。但是,增加的共享暴露于任务干扰的更多参数,这可能会阻碍概括和稳健性。在利用共享解码器的归纳偏见的同时,遏制这种干扰的有效方法仍然是一个公开挑战。为了应对这一挑战,我们建议进行渐进解码器融合(PDF),以根据任务间表示相似性逐步组合任务解码器。我们表明,此过程导致了一个多任务网络,具有更好地概括为分配和分布数据以及对对抗性攻击的鲁棒性。此外,我们观察到,该多任务网络的不同任务的预测彼此更加一致。
translated by 谷歌翻译
场景变化检测(SCD)是一项关键的感知任务,通过比较在不同时间捕获的场景来确定变化。 SCD由于嘈杂的照明,季节性变化和两次观点的透视差异而具有挑战性。基于深度神经网络的解决方案需要大量的注释数据,这些数据乏味而昂贵。另一方面,从大型数据集中传输学习会导致域移动。为了应对这些挑战,我们提出了一种新颖的\ textit {差异自我监督预审(DSP)}方法,该方法使用特征差异来学习与变化区域相对应的歧视性表示,同时通过跨视图来实现时间不变性来解决嘈杂的变化。我们对SCD数据集的实验结果证明了我们方法的有效性,特别是在摄像机观点和照明条件下的差异。与使用超过一百万个标记的图像的自我监督的Barlow双胞胎和标准图像预处理相比,DSP可以超过它而无需使用任何其他数据。我们的结果还证明了DSP对自然腐败,分配转移和学习有限的数据的鲁棒性。
translated by 谷歌翻译
深度学习的进步已导致计算机视觉的稳定进步,并提高了对象检测和语义细分等任务的准确性。然而,深度神经网络容易受到对抗攻击的影响,因此在可靠的部署中提出了挑战。 3D场景对机器人技术和高级驱动辅助系统的理解中的两个突出任务是单眼的深度和姿势估计,通常以无监督的方式一起学习。尽管存在评估对抗性攻击对单眼深度估计的影响的研究,但缺乏对对抗性扰动对姿势估计的系统性证明和分析。我们展示了加性不可感知的扰动不仅可以改变预测以增加轨迹漂移,还可以改变其几何形状。我们还研究了针对单眼深度和姿势估计网络的对抗性扰动之间的关系,以及将扰动转移到具有不同架构和损失的其他网络之间的关系。我们的实验表明,生成的扰动如何导致相对旋转和翻译预测的显着错误以及阐明网络的漏洞。
translated by 谷歌翻译
对非平稳数据流的持续学习(CL)仍然是深层神经网络(DNN)的长期挑战之一,因为它们容易出现灾难性的遗忘。 CL模型可以从自我监督的预训练中受益,因为它可以学习更具概括性的任务不可能的功能。但是,随着任务序列的长度的增加,自我监督的预训练的影响会减少。此外,域前训练数据分布和任务分布之间的域转移降低了学习表示的普遍性。为了解决这些局限性,我们建议任务不可知代表合并(TARC),这是CL的两阶段培训范式,它交织了任务 - 诺斯局和特定于任务的学习,从而自欺欺人的培训,然后为每个任务进行监督学习。为了进一步限制在自我监督阶段的偏差,我们在监督阶段采用了任务不可屈服的辅助损失。我们表明,我们的培训范式可以轻松地添加到基于内存或正则化的方法中,并在更具挑战性的CL设置中提供一致的性能增长。我们进一步表明,它导致更健壮和校准的模型。
translated by 谷歌翻译
深层神经网络由于灾难性忘记了以前学习的任务而难以不断学习多个顺序任务。基于排练的方法将以前的任务样本明确存储在缓冲区中,并将其与当前的任务样本交​​织在一起,这被证明是缓解遗忘的最有效的方法。但是,由于其性能与缓冲区的大小相称,因此在低缓冲机制和更长的任务序列下,经验重播(ER)表现不佳。软目标预测的一致性可以帮助ER保存与先前任务有关的信息,因为软目标捕获了数据的丰富相似性结构。因此,我们研究了在各种持续学习方案下,一致性正则化在ER框架中的作用。我们还建议将一致性正规化作为一个自制的借口任务,从而使使用各种自我监督的学习方法作为正规化者。同时增强了对自然腐败的模型校准和鲁棒性,但规范预测的一致性会导致在所有持续学习场景中遗忘。在不同的正规化家族中,我们发现更严格的一致性约束可以更好地保留先前的任务信息。
translated by 谷歌翻译
与深层神经网络相比,人类较少依赖虚假的相关性和微不足道的提示,例如纹理,从而导致更好的概括和稳健性。它可以归因于先前的知识或大脑中存在的高级认知诱导偏置。因此,将有意义的归纳偏见引入神经网络可以帮助学习更多通用和高级表示,并减轻一些缺点。我们提出痴迷以提炼感应偏见并为神经网络带来形状意识。我们的方法包括一个偏差对准目标,该目标强制执行网络学习更多的通用表示,这些代表不太容易受到数据中意外提示的影响,从而改善了概括性能。依从性不太容易受到捷径学习的影响,并且表现出较低的质地偏见。更好的表示还有助于提高对对抗性攻击的鲁棒性,因此我们无缝地插入了现有的对抗训练方案,以显示概括和稳健性之间的更好权衡。
translated by 谷歌翻译
一组复杂的机制促进了大脑中的持续学习(CL)。这包括用于整合信息的多个内存系统的相互作用,如互补学习系统(CLS)理论和突触巩固,以保护获得的知识免受擦除。因此,我们提出了一种通用CL方法,该方法在突触巩固和双重记忆体验重播(Synergy)之间产生协同作用。我们的方法保持语义记忆,该记忆积累并巩固了整个任务中的信息,并与情节内存进行交互以有效重播。它通过跟踪训练轨迹期间参数的重要性并将其固定在语义内存中的巩固参数中,进一步采用了突触巩固。据我们所知,我们的研究是第一个与突触合并一起使用双重记忆体验重播的,该合并适用于一般CL,网络在培训或推理过程中不利用任务边界或任务标签。我们对各种具有挑战性的CL情景和特征分析的评估表明,将突触巩固和CLS理论纳入启用DNN中的有效CL的功效。
translated by 谷歌翻译
基于深度学习的检测网络在自动驾驶系统(广告)中取得了显着进展。广告应在各种环境照明和恶劣天气条件下具有可靠的性能。然而,亮度劣化和视觉障碍物(如眩光,雾)导致视觉相机质量差,导致性能下降。为了克服这些挑战,我们探讨了利用不同数据模型的想法,这些数据模块不同于视觉数据。我们提出了一种基于多模式协作框架的全面检测系统,该框架从RGB(来自Visual Cameras)和热(来自红外相机)数据学习。该框架在学习其自身模式的学习最佳特征中提供了灵活性,同时还包含对方的互补知识。我们广泛的经验结果表明,虽然准确性的提高是标称的,但该值在于挑战性和极其困难的边缘情况,这在广告中的安全关键应用中至关重要。我们提供了在检测中使用热成像系统的效果和限制的整体视图。
translated by 谷歌翻译