步态分析是对评估和量化动物运动的系统方法的研究。步态在许多最先进的生物识别系统中找到了一个独特的重要性,因为它不要求受试者在其他方式所要求的范围内的合作。因此,本质上,它是一种不引人注意的生物识别。本文讨论了步态的硬质和软生物识别特性。它展示了如何通过基于构建的投票计划独自识别基于步态的性别。然后,它描述了使用基因模板分割来提高步态识别准确性。可以使用多人签名映射进行广泛的人群成员。最后,可以使用贝叶斯阈值处理在较小的人群中提高映射。本文提出的所有方法都以足够的实验和结果表现出现有的现有技术。
translated by 谷歌翻译
Three main points: 1. Data Science (DS) will be increasingly important to heliophysics; 2. Methods of heliophysics science discovery will continually evolve, requiring the use of learning technologies [e.g., machine learning (ML)] that are applied rigorously and that are capable of supporting discovery; and 3. To grow with the pace of data, technology, and workforce changes, heliophysics requires a new approach to the representation of knowledge.
translated by 谷歌翻译
We describe a Physics-Informed Neural Network (PINN) that simulates the flow induced by the astronomical tide in a synthetic port channel, with dimensions based on the Santos - S\~ao Vicente - Bertioga Estuarine System. PINN models aim to combine the knowledge of physical systems and data-driven machine learning models. This is done by training a neural network to minimize the residuals of the governing equations in sample points. In this work, our flow is governed by the Navier-Stokes equations with some approximations. There are two main novelties in this paper. First, we design our model to assume that the flow is periodic in time, which is not feasible in conventional simulation methods. Second, we evaluate the benefit of resampling the function evaluation points during training, which has a near zero computational cost and has been verified to improve the final model, especially for small batch sizes. Finally, we discuss some limitations of the approximations used in the Navier-Stokes equations regarding the modeling of turbulence and how it interacts with PINNs.
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
现有的数据驱动和反馈流量控制策略不考虑实时数据测量的异质性。此外,对于缺乏数据效率,传统的加固学习方法(RL)方法通常会缓慢收敛。此外,常规的最佳外围控制方案需要对系统动力学的精确了解,因此对内源性不确定性会很脆弱。为了应对这些挑战,这项工作提出了一种基于不可或缺的增强学习(IRL)的方法来学习宏观交通动态,以进行自适应最佳周边控制。这项工作为运输文献做出了以下主要贡献:(a)开发连续的时间控制,并具有离散增益更新以适应离散时间传感器数据。 (b)为了降低采样复杂性并更有效地使用可用数据,将体验重播(ER)技术引入IRL算法。 (c)所提出的方法以“无模型”方式放松模型校准的要求,该方式可以稳健地进行建模不确定性,并通过数据驱动的RL算法增强实时性能。 (d)通过Lyapunov理论证明了基于IRL的算法和受控交通动力学的稳定性的收敛性。最佳控制定律被参数化,然后通过神经网络(NN)近似,从而缓解计算复杂性。在不需要模型线性化的同时,考虑了状态和输入约束。提出了数值示例和仿真实验,以验证所提出方法的有效性和效率。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
无人驾驶汽车(UAV)在许多领域都受雇于摄影,紧急,娱乐,国防,农业,林业,采矿和建筑。在过去的十年中,无人机技术在许多施工项目阶段中找到了应用程序,从现场映射,进度监控,建筑物检查,损坏评估和材料交付等等。尽管已经对无人机在各种施工相关的过程中的优势进行了广泛的研究,但关于提高任务能力和效率的无人机协作的研究仍然很少。本文提出了一种基于塔格狩猎游戏和粒子群优化(PSO)的多个无人机的新合作路径计划算法。首先,定义了每个无人机的成本函数,并包含多个目标和约束。然后,开发了无人机游戏框架,以将多功能路径计划制定到寻找回报优势均衡的问题。接下来,提出了基于PSO的算法来获得无人机的最佳路径。由三个无人机检查的大型建筑工地的仿真结果表明,在检查任务期间,提出的算法在为无人机形成的可行和高效飞行路径生成可行,高效的飞行路径上的有效性。
translated by 谷歌翻译
骨肉瘤是最常见的原发性骨癌,其标准治疗包括术前化疗,然后切除。化学疗法反应用于预测患者的预后和进一步治疗。坏死在切除标本上的组织学幻灯片通常评估了坏死比定义为坏死肿瘤与总体肿瘤之比。已知坏死比> = 90%的患者的预后更好。多个载玻片对坏死比的手动微观综述是半定量性的,并且可能具有观察者间和观察者间的变异性。我们提出了一种基于目标和可再现的深度学习方法,以估计坏死比,并从扫描的苏木精和曙红全幻灯片图像预测结果。我们以3134个WSI的速度收集了103例骨肉瘤病例,以训练我们的深度学习模型,验证坏死比评估并评估结果预测。我们训练了深层多磁化网络,以分割多个组织亚型,包括生存的肿瘤和像素级中的坏死肿瘤,并计算来自多个WSI的病例级坏死比。我们显示了通过分割模型估算的坏死比,高度与由专家手动评估的病理报告中的坏死比高度相关,其中IV级的平均绝对差异(100%),III(> = 90%)和II(> = 50%和<50%和< 90%)坏死反应分别为4.4%,4.5%和17.8%。我们成功地对患者进行了分层,以预测P = 10^-6的总生存率,而P = 0.012的无进展生存率。我们没有可变性的可重现方法使我们能够调整截止阈值,特别是用于模型和数据集的截止阈值,为OS的80%,PFS为60%。我们的研究表明,深度学习可以支持病理学家作为一种客观的工具,可以分析组织学中骨肉瘤,以评估治疗反应并预测患者结果。
translated by 谷歌翻译
Majorana示威者是一项领先的实验,寻找具有高纯净锗探测器(HPGE)的中性s中性双β衰变。机器学习提供了一种最大化这些检测器提供的信息量的新方法,但是与传统分析相比,数据驱动的性质使其不可解释。一项可解释性研究揭示了机器的决策逻辑,使我们能够从机器中学习以反馈传统分析。在这项工作中,我们介绍了Majorana演示者数据的第一个机器学习分析。这也是对任何锗探测器实验的第一个可解释的机器学习分析。训练了两个梯度增强的决策树模型,以从数据中学习,并进行了基于游戏理论的模型可解释性研究,以了解分类功率的起源。通过从数据中学习,该分析识别重建参数之间的相关性,以进一步增强背景拒绝性能。通过从机器中学习,该分析揭示了新的背景类别对相互利用的标准Majorana分析的重要性。该模型与下一代锗探测器实验(如传说)高度兼容,因为它可以同时在大量探测器上进行训练。
translated by 谷歌翻译
多节点WDM网络的数字双胞胎模型是从单个访问点获得的。该模型用于预测和优化网络中每个链接的发射功率配置文件,并获得最多2.2 〜db的边距改进。不优化的传输。
translated by 谷歌翻译