光学计算是一种新兴技术,用于下一代高效人工智能(AI),其速度和效率超高。电磁场模拟对于光子设备和电路的设计,优化和验证至关重要。但是,昂贵的数值模拟显着阻碍了光子电路设计循环中的可扩展性和转环。最近,已经提出了物理信息的神经网络来预测具有预定义参数的部分微分方程(PDE)的单个实例的光场解。它们复杂的PDE公式和缺乏有效的参数化机制限制了其在实际模拟方案中的灵活性和概括。在这项工作中,首次提出了一个被称为Neurolight的物理敏捷神经操作员框架,以学习一个频率域的麦克斯韦PDE家族,以进行超快速的参数光子设备模拟。我们通过几种新技术来平衡神经照明的效率和概括。具体而言,我们将不同的设备离散到统一域中,代表具有紧凑型波的参数PDE,并通过掩盖的源建模编码入射光。我们使用参数效率高的跨形神经块设计模型,并采用基于叠加的增强来进行数据效率学习。通过这些协同方法,神经亮像可以概括为大量的看不见的模拟设置,比数值求解器显示了2个磁性的模拟速度,并且比先前的神经网络模型优于降低54%的预测误差,而降低了约44%的参数。 。我们的代码可在https://github.com/jeremiemelo/neurolight上找到。
translated by 谷歌翻译
数据在于现代深度学习的核心。监督学习的令人印象深刻的表现建立在大量准确标记的数据基础上。但是,在某些现实世界中,准确的标签可能不可行。取而代之的是,为每个数据示例提供了多个注释者提供多个嘈杂标签(而不是一个精确的标签)。在这样的嘈杂培训数据集上学习分类器是一项具有挑战性的任务。以前的方法通常假设所有数据示例共享与注释误差相关的相同参数集,而我们证明标签错误学习应既是注释者,又是数据示例依赖性。在这一观察结果的激励下,我们提出了一种新颖的学习算法。与MNIST,CIFAR-100和Imagenet-100的几种最新基线方法相比,该方法显示出优势。我们的代码可在以下网址获得:https://github.com/zhengqigao/learning-from-multiple-annotator-noisy-labels。
translated by 谷歌翻译
Verifying the robustness property of a general Rectified Linear Unit (ReLU) network is an NPcomplete problem. Although finding the exact minimum adversarial distortion is hard, giving a certified lower bound of the minimum distortion is possible. Current available methods of computing such a bound are either time-consuming or deliver low quality bounds that are too loose to be useful. In this paper, we exploit the special structure of ReLU networks and provide two computationally efficient algorithms (Fast-Lin,Fast-Lip) that are able to certify non-trivial lower bounds of minimum adversarial distortions. Experiments show that (1) our methods deliver bounds close to (the gap is 2-3X) exact minimum distortions found by Reluplex in small networks while our algorithms are more than 10,000 times faster; (2) our methods deliver similar quality of bounds (the gap is within 35% and usually around 10%; sometimes our bounds are even better) for larger networks compared to the methods based on solving linear programming problems but our algorithms are 33-14,000 times faster; (3) our method is capable of solving large MNIST and CIFAR networks up to 7 layers with more than 10,000 neurons within tens of seconds on a single CPU core. In addition, we show that there is no polynomial time algorithm that can approximately find the minimum 1 adversarial distortion of a ReLU network with a 0.99 ln n approximation ratio unless NP=P, where n is the number of neurons in the network.
translated by 谷歌翻译
我们提出Dave Aquatic Virtual Environals(Dave),这是用于水下机器人,传感器和环境的开源仿真堆栈。传统的机器人模拟器并非旨在应对海洋环境带来的独特挑战,包括但不限于在空间和时间上变化的环境条件,受损或具有挑战性的感知以及在通常未探索的环境中数据的不可用。考虑到各种传感器和平台,对于不可避免地抵制更广泛采用的特定用例,车轮通常会重新发明。在现有模拟器的基础上,我们提供了一个框架,以帮助加快算法的开发和评估,否则这些算法需要在海上需要昂贵且耗时的操作。该框架包括基本的构建块(例如,新车,水跟踪多普勒速度记录仪,基于物理的多微型声纳)以及开发工具(例如,动态测深的产卵,洋流),使用户可以专注于方法论,而不是方法。比软件基础架构。我们通过示例场景,测深数据导入,数据检查的用户界面和操纵运动计划以及可视化来演示用法。
translated by 谷歌翻译
There is an increasing interest in developing artificial intelligence (AI) systems to process and interpret electronic health records (EHRs). Natural language processing (NLP) powered by pretrained language models is the key technology for medical AI systems utilizing clinical narratives. However, there are few clinical language models, the largest of which trained in the clinical domain is comparatively small at 110 million parameters (compared with billions of parameters in the general domain). It is not clear how large clinical language models with billions of parameters can help medical AI systems utilize unstructured EHRs. In this study, we develop from scratch a large clinical language model - GatorTron - using >90 billion words of text (including >82 billion words of de-identified clinical text) and systematically evaluate it on 5 clinical NLP tasks including clinical concept extraction, medical relation extraction, semantic textual similarity, natural language inference (NLI), and medical question answering (MQA). We examine how (1) scaling up the number of parameters and (2) scaling up the size of the training data could benefit these NLP tasks. GatorTron models scale up the clinical language model from 110 million to 8.9 billion parameters and improve 5 clinical NLP tasks (e.g., 9.6% and 9.5% improvement in accuracy for NLI and MQA), which can be applied to medical AI systems to improve healthcare delivery. The GatorTron models are publicly available at: https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara/models/gatortron_og.
translated by 谷歌翻译
流量交叉点的机芯特定车辆分类和计数是各种交通管理活动的重要组成部分。在这种情况下,在最近基于计算机视觉的技术方面的进步,相机已经成为从交通场景中提取车辆轨迹的可靠数据源。然而,随着这种方式的运动轨迹的特性根据相机校准而变化,对这些轨迹进行分类非常具有挑战性。虽然一些现有方法已经解决了具有体面准确性的此类分类任务,但这些方法的性能显着依赖于手动规范的几个感兴趣区域。在这项研究中,我们提出了一种自动分类方法,用于移动基于Vision的车辆轨迹的特定分类(例如右转,左转和通过运动)。我们的分类框架使用此后,采用基于同性的分配策略来指定在交通场景中观察到的不同运动模式,以将传入的车辆轨迹分配给识别的移动组。旨在克服基于视觉轨迹的固有缺点的新的相似度措施。实验结果表明,拟议的分类方法的有效性及其适应不同交通方案的能力,无需任何手动干预。
translated by 谷歌翻译
我们提出了一种数据驱动的电力分配方法,在联邦学习(FL)上的受干扰有限的无线网络中的电力分配。功率策略旨在在通信约束下的流行过程中最大化传输的信息,具有提高全局流动模型的训练精度和效率的最终目标。所提出的功率分配策略使用图形卷积网络进行参数化,并且通过引流 - 双算法解决了相关的约束优化问题。数值实验表明,所提出的方法在传输成功率和流动性能方面优于三种基线方法。
translated by 谷歌翻译
拒绝宇宙射线(CRS)对于CCD捕获数据的科学解释至关重要,但是单曝光图像中检测CRS仍然具有挑战性。传统的CR探测器需要针对不同仪器进行实验参数调整,而最近的深度学习方法仅产生特定于仪器的模型,这些模型遭受了未包括训练数据中未包括的望远镜的性能损失。在这项工作中,我们介绍了宇宙conn,这是在LAS Cumbres天文台(LCO)部署24个望远镜的通用CR探测器。我们首先利用来自LCO的全球望远镜网络的数千张图像来构建一个大型,不同的基于地面的CR数据集,以丰富覆盖仪器和CR功能。然后,我们优化了一个神经网络,并提出了一种新型的CR检测中间加权损耗函数,以训练在LCO成像数据上达到99.91%的真实阳性检测率的通用模型,并在Gemini GMOS-N-n. /s,假阳性率为0.01%。我们还构建了一套工具,包括交互式CR面膜可视化和编辑界面,控制台命令和Python API,以使天文学家社区广泛访问自动,可靠的CR检测。我们的数据集,开源代码库和训练有素的模型可在https://github.com/cy-xu/cosmic-conn上找到。
translated by 谷歌翻译
小型太阳能光伏(PV)阵列中电网的有效集成计划需要访问高质量的数据:单个太阳能PV阵列的位置和功率容量。不幸的是,不存在小型太阳能光伏的国家数据库。那些确实有限的空间分辨率,通常汇总到州或国家一级。尽管已经发布了几种有希望的太阳能光伏检测方法,但根据研究,研究这些模型的性能通常是高度异质的。这些方法对能源评估的实际应用的比较变得具有挑战性,可能意味着报告的绩效评估过于乐观。异质性有多种形式,我们在这项工作中探讨了每种形式:空间聚集的水平,地面真理的验证,培训和验证数据集的不一致以及培训的位置和传感器的多样性程度和验证数据始发。对于每个人,我们都会讨论文献中的新兴实践,以解决它们或暗示未来研究的方向。作为调查的一部分,我们评估了两个大区域的太阳PV识别性能。我们的发现表明,由于验证过程中的共同局限性,从卫星图像对太阳PV自动识别的传统绩效评估可能是乐观的。这项工作的收获旨在为能源研究人员和专业人员提供自动太阳能光伏评估技术的大规模实用应用。
translated by 谷歌翻译