Closed-circuit video (CCTV) inspection has been the most popular technique for visually evaluating the interior status of pipelines in recent decades. Certified inspectors prepare the pipe repair document based on the CCTV inspection. The traditional manual method of assessing sewage structural conditions from pipe repair documents takes a long time and is prone to human mistakes. The automatic identification of necessary texts has received little attention. By building an automated framework employing Natural Language Processing (NLP), this study presents an effective technique to automate the identification of the pipe defect rating of the pipe repair documents. NLP technologies are employed to break down textual material into grammatical units in this research. Further analysis entails using words to discover pipe defect symptoms and their frequency and then combining that information into a single score. Our model achieves 95.0% accuracy,94.9% sensitivity, 94.4% specificity, 95.9% precision score, and 95.7% F1 score, showing the potential of the proposed model to be used in large-scale pipe repair documents for accurate and efficient pipeline failure detection to improve the quality of the pipeline. Keywords: Sewer pipe inspection, Defect detection, Natural language processing, Text recognition
translated by 谷歌翻译
Automatic diabetic retinopathy (DR) grading based on fundus photography has been widely explored to benefit the routine screening and early treatment. Existing researches generally focus on single-field fundus images, which have limited field of view for precise eye examinations. In clinical applications, ophthalmologists adopt two-field fundus photography as the dominating tool, where the information from each field (i.e.,macula-centric and optic disc-centric) is highly correlated and complementary, and benefits comprehensive decisions. However, automatic DR grading based on two-field fundus photography remains a challenging task due to the lack of publicly available datasets and effective fusion strategies. In this work, we first construct a new benchmark dataset (DRTiD) for DR grading, consisting of 3,100 two-field fundus images. To the best of our knowledge, it is the largest public DR dataset with diverse and high-quality two-field images. Then, we propose a novel DR grading approach, namely Cross-Field Transformer (CrossFiT), to capture the correspondence between two fields as well as the long-range spatial correlations within each field. Considering the inherent two-field geometric constraints, we particularly define aligned position embeddings to preserve relative consistent position in fundus. Besides, we perform masked cross-field attention during interaction to flter the noisy relations between fields. Extensive experiments on our DRTiD dataset and a public DeepDRiD dataset demonstrate the effectiveness of our CrossFiT network. The new dataset and the source code of CrossFiT will be publicly available at https://github.com/FDU-VTS/DRTiD.
translated by 谷歌翻译
Real-time individual endpoint prediction has always been a challenging task but of great clinic utility for both patients and healthcare providers. With 6,879 chronic kidney disease stage 4 (CKD4) patients as a use case, we explored the feasibility and performance of gated recurrent units with decay that models Weibull probability density function (GRU-D-Weibull) as a semi-parametric longitudinal model for real-time individual endpoint prediction. GRU-D-Weibull has a maximum C-index of 0.77 at 4.3 years of follow-up, compared to 0.68 achieved by competing models. The L1-loss of GRU-D-Weibull is ~66% of XGB(AFT), ~60% of MTLR, and ~30% of AFT model at CKD4 index date. The average absolute L1-loss of GRU-D-Weibull is around one year, with a minimum of 40% Parkes serious error after index date. GRU-D-Weibull is not calibrated and significantly underestimates true survival probability. Feature importance tests indicate blood pressure becomes increasingly important during follow-up, while eGFR and blood albumin are less important. Most continuous features have non-linear/parabola impact on predicted survival time, and the results are generally consistent with existing knowledge. GRU-D-Weibull as a semi-parametric temporal model shows advantages in built-in parameterization of missing, native support for asynchronously arrived measurement, capability of output both probability and point estimates at arbitrary time point for arbitrary prediction horizon, improved discrimination and point estimate accuracy after incorporating newly arrived data. Further research on its performance with more comprehensive input features, in-process or post-process calibration are warranted to benefit CKD4 or alike terminally-ill patients.
translated by 谷歌翻译
Federated Learning (FL), as a rapidly evolving privacy-preserving collaborative machine learning paradigm, is a promising approach to enable edge intelligence in the emerging Industrial Metaverse. Even though many successful use cases have proved the feasibility of FL in theory, in the industrial practice of Metaverse, the problems of non-independent and identically distributed (non-i.i.d.) data, learning forgetting caused by streaming industrial data, and scarce communication bandwidth remain key barriers to realize practical FL. Facing the above three challenges simultaneously, this paper presents a high-performance and efficient system named HFEDMS for incorporating practical FL into Industrial Metaverse. HFEDMS reduces data heterogeneity through dynamic grouping and training mode conversion (Dynamic Sequential-to-Parallel Training, STP). Then, it compensates for the forgotten knowledge by fusing compressed historical data semantics and calibrates classifier parameters (Semantic Compression and Compensation, SCC). Finally, the network parameters of the feature extractor and classifier are synchronized in different frequencies (Layer-wiseAlternative Synchronization Protocol, LASP) to reduce communication costs. These techniques make FL more adaptable to the heterogeneous streaming data continuously generated by industrial equipment, and are also more efficient in communication than traditional methods (e.g., Federated Averaging). Extensive experiments have been conducted on the streamed non-i.i.d. FEMNIST dataset using 368 simulated devices. Numerical results show that HFEDMS improves the classification accuracy by at least 6.4% compared with 8 benchmarks and saves both the overall runtime and transfer bytes by up to 98%, proving its superiority in precision and efficiency.
translated by 谷歌翻译
目的是对临床文本去识别的自然语言处理(NLP)模型的评估取决于临床注释的可用性,临床注释通常由于隐私问题而受到限制。 NLP沙盒是一种通过采用联合模型到数据的方法来减轻NLP模型缺乏数据和评估框架的方法。这使得无偏见的联合模型评估无需共享多个机构的敏感数据。材料和方法我们利用Synapse协作框架,容器化软件和OpenAPI Generator来构建NLP沙盒(NLPSANDBOX.IO)。我们使用来自三个机构的数据评估了两个最先进的NLP去识别注释模型Philter和Neuroner。我们使用来自外部验证站点的数据进一步验证了模型性能。结果我们通过去识别临床模型评估证明了NLP沙箱的有用性。外部开发人员能够将其模型纳入NLP沙盒模板中,并提供用户体验反馈。讨论我们证明了使用NLP沙箱对临床文本去识别模型进行多站点评估的可行性,而无需共享数据。标准化模型和数据模式可以使模型传输和实现平稳。为了概括NLP沙箱,数据所有者和模型开发人员需要进行工作,以开发合适和标准化的模式,并调整其数据或模型以适合模式。结论NLP沙箱降低了利用临床数据进行NLP模型评估的障碍,并促进了联合会的NLP模型的联合,多站点,无偏见的评估。
translated by 谷歌翻译
联合学习(FL)是一种机器学习技术,它使参与者能够在不交换私人数据的情况下协作培训高质量的模型。利用跨索洛FL(CS-FL)设置的参与者是具有不同任务需求的独立组织,他们不仅关心数据隐私,而且由于知识产权的考虑而独立培训其独特的模型。大多数现有的FL方法无法满足上述方案。在本文中,我们提出了一种基于未标记数据的伪标记的FL方法,该方法是通过诸如辅助的过程。据我们所知,这是第一种与异质任务,异质模型和异质培训算法同时兼容的第一种FL方法。实验结果表明,所提出的方法比竞争能力更好。对于非独立和相同分布的(IID)设置和异质模型而言,尤其如此,其中提出的方法可实现35%的性能提高。
translated by 谷歌翻译
目标为可以处理多答题问题的临床问答(QA)系统的开发和评估创建数据集。我们利用2018年国家NLP临床挑战(N2C2)语料库的注释关系来产生QA数据集。 1-0和1-o-n药物 - 理性关系形成了不可批售和多答案的条目,它代表了现有临床QA数据集缺乏的具有挑战性的情景。结果结果rxwhyqa dataSet包含91,440个QA条目,其中一半是未签发的,并且应答的21%(n = 19,269)需要多个答案。数据集符合社区审查的斯坦福问题应答DataSet(Squad)格式。讨论RXWhyQA对于比较需要处理零和多答案挑战的不同系统非常有用,要求对误报和假阴性答案的双重缓解。结论我们创建并共用了一个临床QA数据集,重点是多答题问题,以代表真实世界的情景。
translated by 谷歌翻译
虽然我们注意临床自然语言处理(NLP)的最新进展,但我们可以注意到临床和翻译研究界的一些抵抗,因为透明度,可解释性和可用性有限,采用NLP模型。在这项研究中,我们提出了一种开放的自然语言处理开发框架。我们通过实施NLP算法为国家Covid队列协作(N3C)进行了评估。基于Covid-19相关临床笔记的信息提取的利益,我们的工作包括1)使用Covid-19标志和症状作为用例的开放数据注释过程,2)一个社区驱动的规则集合平台,3)合成文本数据生成工作流程,用于生成信息提取任务的文本而不涉及人为受试者。 Corpora来自来自三个不同机构的文本(Mayo Clinic,肯塔基州大学,明尼苏达大学)。用单个机构(Mayo)规则集进行了金标准注释。这导致了0.876,0.706和0.694的F-Scors分别用于Mayo,Minnesota和肯塔基测试数据集。作为N3C NLP子群体的联盟努力的研究表明,创建联邦NLP算法开发和基准测试平台的可行性,以增强多机构临床NLP研究和采用。虽然我们在这项工作中使用Covid-19作为用例,但我们的框架足以适用于临床NLP的其他兴趣领域。
translated by 谷歌翻译
Diabetic Retinopathy (DR) is considered one of the primary concerns due to its effect on vision loss among most people with diabetes globally. The severity of DR is mostly comprehended manually by ophthalmologists from fundus photography-based retina images. This paper deals with an automated understanding of the severity stages of DR. In the literature, researchers have focused on this automation using traditional machine learning-based algorithms and convolutional architectures. However, the past works hardly focused on essential parts of the retinal image to improve the model performance. In this paper, we adopt transformer-based learning models to capture the crucial features of retinal images to understand DR severity better. We work with ensembling image transformers, where we adopt four models, namely ViT (Vision Transformer), BEiT (Bidirectional Encoder representation for image Transformer), CaiT (Class-Attention in Image Transformers), and DeiT (Data efficient image Transformers), to infer the degree of DR severity from fundus photographs. For experiments, we used the publicly available APTOS-2019 blindness detection dataset, where the performances of the transformer-based models were quite encouraging.
translated by 谷歌翻译
Pneumonia, a respiratory infection brought on by bacteria or viruses, affects a large number of people, especially in developing and impoverished countries where high levels of pollution, unclean living conditions, and overcrowding are frequently observed, along with insufficient medical infrastructure. Pleural effusion, a condition in which fluids fill the lung and complicate breathing, is brought on by pneumonia. Early detection of pneumonia is essential for ensuring curative care and boosting survival rates. The approach most usually used to diagnose pneumonia is chest X-ray imaging. The purpose of this work is to develop a method for the automatic diagnosis of bacterial and viral pneumonia in digital x-ray pictures. This article first presents the authors' technique, and then gives a comprehensive report on recent developments in the field of reliable diagnosis of pneumonia. In this study, here tuned a state-of-the-art deep convolutional neural network to classify plant diseases based on images and tested its performance. Deep learning architecture is compared empirically. VGG19, ResNet with 152v2, Resnext101, Seresnet152, Mobilenettv2, and DenseNet with 201 layers are among the architectures tested. Experiment data consists of two groups, sick and healthy X-ray pictures. To take appropriate action against plant diseases as soon as possible, rapid disease identification models are preferred. DenseNet201 has shown no overfitting or performance degradation in our experiments, and its accuracy tends to increase as the number of epochs increases. Further, DenseNet201 achieves state-of-the-art performance with a significantly a smaller number of parameters and within a reasonable computing time. This architecture outperforms the competition in terms of testing accuracy, scoring 95%. Each architecture was trained using Keras, using Theano as the backend.
translated by 谷歌翻译