Continual Learning, also known as Lifelong or Incremental Learning, has recently gained renewed interest among the Artificial Intelligence research community. Recent research efforts have quickly led to the design of novel algorithms able to reduce the impact of the catastrophic forgetting phenomenon in deep neural networks. Due to this surge of interest in the field, many competitions have been held in recent years, as they are an excellent opportunity to stimulate research in promising directions. This paper summarizes the ideas, design choices, rules, and results of the challenge held at the 3rd Continual Learning in Computer Vision (CLVision) Workshop at CVPR 2022. The focus of this competition is the complex continual object detection task, which is still underexplored in literature compared to classification tasks. The challenge is based on the challenge version of the novel EgoObjects dataset, a large-scale egocentric object dataset explicitly designed to benchmark continual learning algorithms for egocentric category-/instance-level object understanding, which covers more than 1k unique main objects and 250+ categories in around 100k video frames.
translated by 谷歌翻译
We explore the downstream task performances for graph neural network (GNN) self-supervised learning (SSL) methods trained on subgraphs extracted from relational databases (RDBs). Intuitively, this joint use of SSL and GNNs should allow to leverage more of the available data, which could translate to better results. However, we found that naively porting contrastive SSL techniques can cause ``negative transfer'': linear evaluation on fixed representations from a pretrained model performs worse than on representations from the randomly-initialized model. Based on the conjecture that contrastive SSL conflicts with the message passing layers of the GNN, we propose InfoNode: a contrastive loss aiming to maximize the mutual information between a node's initial- and final-layer representation. The primary empirical results support our conjecture and the effectiveness of InfoNode.
translated by 谷歌翻译
神经网络的一种众所周知的故障模式对应于高置信度错误的预测,尤其是对于训练分布有所不同的数据。这种不安全的行为限制了其适用性。为此,我们表明可以通过在其内部表示中添加约束来定义提供准确置信度的模型。也就是说,我们将类标签编码为固定的唯一二进制向量或类代码,并使用这些标签来在整个模型中强制执行依赖类的激活模式。结果预测因子被称为总激活分类器(TAC),而TAC用作基础分类器的附加组件,以指示预测的可靠性。给定数据实例,TAC切片中间表示分为不相交集,并将此类切片减少到标量中,从而产生激活曲线。在培训期间,将激活轮廓推向分配给给定培训实例的代码。在测试时,可以预测与最匹配示例激活曲线的代码相对应的类。从经验上讲,我们观察到激活模式及其相应代码之间的相似之处导致一种廉价的无监督方法来诱导歧视性置信度得分。也就是说,我们表明TAC至少与从现有模型中提取的最新置信度得分一样好,同时严格改善了模型在拒绝设置上的价值。还观察到TAC在多种类型的架构和数据模式上都很好地工作。
translated by 谷歌翻译
胎儿镜检查激光​​光凝是一种广泛采用的方法,用于治疗双胞胎输血综合征(TTTS)。该过程涉及光凝病理吻合术以调节双胞胎之间的血液交换。由于观点有限,胎儿镜的可操作性差,可见性差和照明的可变性,因此该程序尤其具有挑战性。这些挑战可能导致手术时间增加和消融不完全。计算机辅助干预措施(CAI)可以通过识别场景中的关键结构并通过视频马赛克来扩展胎儿镜观景领域,从而为外科医生提供决策支持和背景意识。由于缺乏设计,开发和测试CAI算法的高质量数据,该领域的研究受到了阻碍。通过作为MICCAI2021内窥镜视觉挑战组织的胎儿镜胎盘胎盘分割和注册(FETREG2021)挑战,我们发布了第一个Largescale Multencentre TTTS数据集,用于开发广义和可靠的语义分割和视频摩擦质量algorithms。对于这一挑战,我们发布了一个2060张图像的数据集,该数据集是从18个体内TTTS胎儿镜检查程序和18个简短视频剪辑的船只,工具,胎儿和背景类别的像素通道。七个团队参与了这一挑战,他们的模型性能在一个看不见的测试数据集中评估了658个从6个胎儿镜程序和6个短剪辑的图像的图像。这项挑战为创建通用解决方案提供了用于胎儿镜面场景的理解和摩西式解决方案的机会。在本文中,我们介绍了FETREG2021挑战的发现,以及报告TTTS胎儿镜检查中CAI的详细文献综述。通过这一挑战,它的分析和多中心胎儿镜数据的发布,我们为该领域的未来研究提供了基准。
translated by 谷歌翻译
在本文中,我们探讨了基于GAN的少量数据增强用作改善少量分类性能的方法。我们对如何对这样的任务进行微调(其中一项是以课堂开采方式)进行微调的探索,以及对这些模型如何在改善几次分类的情况下进行严格的经验研究。我们确定了与纯粹有监督的制度训练此类生成模型的困难有关的问题,几乎没有例子,以及有关现有作品的评估协议的问题。我们还发现,在这种制度中,分类精度对数据集的类别随机分配方式高度敏感。因此,我们提出了一种半监督的微调方法,作为解决这些问题的更务实的方向。
translated by 谷歌翻译
最近的自我监督进展表明,预先训练大量无监督数据的大型神经网络可能导致下游任务的概括令人印象深刻。这些模型最近被作为基础模型,一直转变为自然语言处理领域。虽然类似的模型也在大型图像的核心训练中,但它们不适合遥感数据。为刺激地球监测基础模型的发展,我们建议开发由与气候变化相关的各种下游任务组成的新基准。我们认为,这可能导致许多现有应用程序的大量改进,并促进新应用的发展。该提案还可以提出合作,并提出更好的评估过程,以减轻地球监测的基础模型的潜在缺陷。
translated by 谷歌翻译
从大型预训练模型转移学习对于许多计算机视觉任务来说都是至关重要的。最近的研究表明,由于存在存在的多个对象类的图像被分配单个标签,所以类似于想象成的数据集弱标记。这种模糊的偏置模型朝向单一预测,这可能导致抑制数据中倾向于共同发生的类。灵感来自语言出现文学,我们提出了多标签迭代学习(英里)来利用迭代学习框架从单个标签中融入多标签学习的归纳偏见。英里是一种简单而有效的过程,通过通过与学习瓶颈的连续几代教师和学生网络传播二进制预测来构建图像的多标签描述。实验表明,我们的方法对Imagenet的准确性以及真正的F1分数表现出系统的益处,这表明英里与标签歧义更好地优于标准训练程序,即使在自我监督权重的微调时也会比标准训练程序更好。我们还表明英里有效地减少标签噪音,实现了最先进的性能,如WebVision等现实大规模嘈杂的数据。此外,英里提高了类增量设置中的性能,例如IIRC,它是强大的分发班次。代码:https://github.com/rajeswar18/mile.
translated by 谷歌翻译
标记数据通常昂贵且耗时,特别是对于诸如对象检测和实例分割之类的任务,这需要对图像的密集标签进行密集的标签。虽然几张拍摄对象检测是关于培训小说中的模型(看不见的)对象类具有很少的数据,但它仍然需要在许多标记的基础(见)类的课程上进行训练。另一方面,自我监督的方法旨在从未标记数据学习的学习表示,该数据转移到诸如物体检测的下游任务。结合几次射击和自我监督的物体检测是一个有前途的研究方向。在本调查中,我们审查并表征了几次射击和自我监督对象检测的最新方法。然后,我们给我们的主要外卖,并讨论未来的研究方向。https://gabrielhuang.github.io/fsod-survey/的项目页面
translated by 谷歌翻译
鉴于部署更可靠的机器学习系统的重要性,研究界内的机器学习模型的解释性得到了相当大的关注。在计算机视觉应用中,生成反事实方法表示如何扰乱模型的输入来改变其预测,提供有关模型决策的详细信息。目前的方法倾向于产生关于模型决策的琐碎的反事实,因为它们通常建议夸大或消除所分类的属性的存在。对于机器学习从业者,这些类型的反事件提供了很少的价值,因为它们没有提供有关不期望的模型或数据偏差的新信息。在这项工作中,我们确定了琐碎的反事实生成问题,我们建议潜水以缓解它。潜水在使用多样性强制损失限制的解除印章潜在空间中学习扰动,以发现关于模型预测的多个有价值的解释。此外,我们介绍一种机制,以防止模型产生微不足道的解释。 Celeba和Synbols的实验表明,与先前的最先进的方法相比,我们的模型提高了生产高质量有价值解释的成功率。代码可在https://github.com/elementai/beyond- trial-explanations获得。
translated by 谷歌翻译
In this paper, we propose a novel technique, namely INVALIDATOR, to automatically assess the correctness of APR-generated patches via semantic and syntactic reasoning. INVALIDATOR reasons about program semantic via program invariants while it also captures program syntax via language semantic learned from large code corpus using the pre-trained language model. Given a buggy program and the developer-patched program, INVALIDATOR infers likely invariants on both programs. Then, INVALIDATOR determines that a APR-generated patch overfits if: (1) it violates correct specifications or (2) maintains errors behaviors of the original buggy program. In case our approach fails to determine an overfitting patch based on invariants, INVALIDATOR utilizes a trained model from labeled patches to assess patch correctness based on program syntax. The benefit of INVALIDATOR is three-fold. First, INVALIDATOR is able to leverage both semantic and syntactic reasoning to enhance its discriminant capability. Second, INVALIDATOR does not require new test cases to be generated but instead only relies on the current test suite and uses invariant inference to generalize the behaviors of a program. Third, INVALIDATOR is fully automated. We have conducted our experiments on a dataset of 885 patches generated on real-world programs in Defects4J. Experiment results show that INVALIDATOR correctly classified 79% overfitting patches, accounting for 23% more overfitting patches being detected by the best baseline. INVALIDATOR also substantially outperforms the best baselines by 14% and 19% in terms of Accuracy and F-Measure, respectively.
translated by 谷歌翻译