当前的COVID-19大流行是对人类直接影响肺部的严重威胁。 Covid-19的自动识别是卫生保健官员的挑战。用于诊断Covid-19的标准黄金方法是逆转录聚合酶链反应(RT-PCR),以从受影响的人那里收集拭子。收集拭子时遇到的一些限制与准确性和长期持续时间有关。胸部CT(计算机断层扫描)是另一种测试方法,可帮助医疗保健提供者迅速识别受感染的肺部区域。它被用作在早期阶段识别Covid-19的支持工具。借助深度学习,COVID-19的CT成像特征。研究人员已证明它对COVID-19 CT图像分类非常有效。在这项研究中,我们回顾了最近可以用来检测COVID-19疾病的深度学习技术。相关研究是由Web of Science,Google Scholar和PubMed等各种数据库收集的。最后,我们比较了不同深度学习模型的结果,并讨论了CT图像分析。
translated by 谷歌翻译
农业是人类社会的支柱,因为它对每个生物体都是必需的。就人类而言,帕迪种植非常重要,主要是亚洲大陆,这是主食食品之一。然而,农业中的植物疾病导致生产力枯竭。植物疾病通常是由害虫,昆虫和病原体引起的,如果在特定时间内不受控制,它们的生产力将大规模降低至大规模。最终,人们看不到稻田产量的增加。准确,及时识别植物疾病可以帮助农民减轻由于害虫和疾病而导致的损失。最近,深度学习技术已被用来识别稻田疾病并克服这些问题。本文基于模型实现了卷积神经网络(CNN),并测试了由636个红外图像样本组成的公共数据集,其中有五个帕迪病类别和一个健康的类别。拟议的模型熟练地识别和分类的五种不同类型的帕迪疾病,准确度为88.28%
translated by 谷歌翻译
一种名为Covid-19的新发现的冠状病毒疾病主要影响人类呼吸系统。 Covid-19是一种由起源于中国武汉的病毒引起的传染病。早期诊断是医疗保健提供者的主要挑战。在较早的阶段,医疗机构令人眼花azz乱,因为没有适当的健康辅助工具或医学可以检测到COVID-19。引入了一种新的诊断工具RT-PCR(逆转录聚合酶链反应)。它从患者的鼻子或喉咙中收集拭子标本,在那里共有19个病毒。该方法有一些与准确性和测试时间有关的局限性。医学专家建议一种称为CT(计算机断层扫描)的替代方法,该方法可以快速诊断受感染的肺部区域并在早期阶段识别Covid-19。使用胸部CT图像,计算机研究人员开发了几种识别Covid-19疾病的深度学习模型。这项研究介绍了卷积神经网络(CNN)和基于VGG16的模型,用于自动化的COVID-19在胸部CT图像上识别。使用14320 CT图像的公共数据集的实验结果显示,CNN和VGG16的分类精度分别为96.34%和96.99%。
translated by 谷歌翻译
In this paper, we propose a novel technique, namely INVALIDATOR, to automatically assess the correctness of APR-generated patches via semantic and syntactic reasoning. INVALIDATOR reasons about program semantic via program invariants while it also captures program syntax via language semantic learned from large code corpus using the pre-trained language model. Given a buggy program and the developer-patched program, INVALIDATOR infers likely invariants on both programs. Then, INVALIDATOR determines that a APR-generated patch overfits if: (1) it violates correct specifications or (2) maintains errors behaviors of the original buggy program. In case our approach fails to determine an overfitting patch based on invariants, INVALIDATOR utilizes a trained model from labeled patches to assess patch correctness based on program syntax. The benefit of INVALIDATOR is three-fold. First, INVALIDATOR is able to leverage both semantic and syntactic reasoning to enhance its discriminant capability. Second, INVALIDATOR does not require new test cases to be generated but instead only relies on the current test suite and uses invariant inference to generalize the behaviors of a program. Third, INVALIDATOR is fully automated. We have conducted our experiments on a dataset of 885 patches generated on real-world programs in Defects4J. Experiment results show that INVALIDATOR correctly classified 79% overfitting patches, accounting for 23% more overfitting patches being detected by the best baseline. INVALIDATOR also substantially outperforms the best baselines by 14% and 19% in terms of Accuracy and F-Measure, respectively.
translated by 谷歌翻译
When robots learn reward functions using high capacity models that take raw state directly as input, they need to both learn a representation for what matters in the task -- the task ``features" -- as well as how to combine these features into a single objective. If they try to do both at once from input designed to teach the full reward function, it is easy to end up with a representation that contains spurious correlations in the data, which fails to generalize to new settings. Instead, our ultimate goal is to enable robots to identify and isolate the causal features that people actually care about and use when they represent states and behavior. Our idea is that we can tune into this representation by asking users what behaviors they consider similar: behaviors will be similar if the features that matter are similar, even if low-level behavior is different; conversely, behaviors will be different if even one of the features that matter differs. This, in turn, is what enables the robot to disambiguate between what needs to go into the representation versus what is spurious, as well as what aspects of behavior can be compressed together versus not. The notion of learning representations based on similarity has a nice parallel in contrastive learning, a self-supervised representation learning technique that maps visually similar data points to similar embeddings, where similarity is defined by a designer through data augmentation heuristics. By contrast, in order to learn the representations that people use, so we can learn their preferences and objectives, we use their definition of similarity. In simulation as well as in a user study, we show that learning through such similarity queries leads to representations that, while far from perfect, are indeed more generalizable than self-supervised and task-input alternatives.
translated by 谷歌翻译
The latent space of autoencoders has been improved for clustering image data by jointly learning a t-distributed embedding with a clustering algorithm inspired by the neighborhood embedding concept proposed for data visualization. However, multivariate tabular data pose different challenges in representation learning than image data, where traditional machine learning is often superior to deep tabular data learning. In this paper, we address the challenges of learning tabular data in contrast to image data and present a novel Gaussian Cluster Embedding in Autoencoder Latent Space (G-CEALS) algorithm by replacing t-distributions with multivariate Gaussian clusters. Unlike current methods, the proposed approach independently defines the Gaussian embedding and the target cluster distribution to accommodate any clustering algorithm in representation learning. A trained G-CEALS model extracts a quality embedding for unseen test data. Based on the embedding clustering accuracy, the average rank of the proposed G-CEALS method is 1.4 (0.7), which is superior to all eight baseline clustering and cluster embedding methods on seven tabular data sets. This paper shows one of the first algorithms to jointly learn embedding and clustering to improve multivariate tabular data representation in downstream clustering.
translated by 谷歌翻译
An unbiased scene graph generation (SGG) algorithm referred to as Skew Class-balanced Re-weighting (SCR) is proposed for considering the unbiased predicate prediction caused by the long-tailed distribution. The prior works focus mainly on alleviating the deteriorating performances of the minority predicate predictions, showing drastic dropping recall scores, i.e., losing the majority predicate performances. It has not yet correctly analyzed the trade-off between majority and minority predicate performances in the limited SGG datasets. In this paper, to alleviate the issue, the Skew Class-balanced Re-weighting (SCR) loss function is considered for the unbiased SGG models. Leveraged by the skewness of biased predicate predictions, the SCR estimates the target predicate weight coefficient and then re-weights more to the biased predicates for better trading-off between the majority predicates and the minority ones. Extensive experiments conducted on the standard Visual Genome dataset and Open Image V4 \& V6 show the performances and generality of the SCR with the traditional SGG models.
translated by 谷歌翻译
In this paper we discuss the theory used in the design of an open source lightmorphic signatures analysis toolkit (LSAT). In addition to providing a core functionality, the software package enables specific optimizations with its modular and customizable design. To promote its usage and inspire future contributions, LSAT is publicly available. By using a self-supervised neural network and augmented machine learning algorithms, LSAT provides an easy-to-use interface with ample documentation. The experiments demonstrate that LSAT improves the otherwise tedious and error-prone tasks of translating lightmorphic associated data into usable spectrograms, enhanced with parameter tuning and performance analysis. With the provided mathematical functions, LSAT validates the nonlinearity encountered in the data conversion process while ensuring suitability of the forecasting algorithms.
translated by 谷歌翻译
Detecting abrupt changes in data distribution is one of the most significant tasks in streaming data analysis. Although many unsupervised Change-Point Detection (CPD) methods have been proposed recently to identify those changes, they still suffer from missing subtle changes, poor scalability, or/and sensitive to noise points. To meet these challenges, we are the first to generalise the CPD problem as a special case of the Change-Interval Detection (CID) problem. Then we propose a CID method, named iCID, based on a recent Isolation Distributional Kernel (IDK). iCID identifies the change interval if there is a high dissimilarity score between two non-homogeneous temporal adjacent intervals. The data-dependent property and finite feature map of IDK enabled iCID to efficiently identify various types of change points in data streams with the tolerance of noise points. Moreover, the proposed online and offline versions of iCID have the ability to optimise key parameter settings. The effectiveness and efficiency of iCID have been systematically verified on both synthetic and real-world datasets.
translated by 谷歌翻译
Artificial Intelligence (AI) has become commonplace to solve routine everyday tasks. Because of the exponential growth in medical imaging data volume and complexity, the workload on radiologists is steadily increasing. We project that the gap between the number of imaging exams and the number of expert radiologist readers required to cover this increase will continue to expand, consequently introducing a demand for AI-based tools that improve the efficiency with which radiologists can comfortably interpret these exams. AI has been shown to improve efficiency in medical-image generation, processing, and interpretation, and a variety of such AI models have been developed across research labs worldwide. However, very few of these, if any, find their way into routine clinical use, a discrepancy that reflects the divide between AI research and successful AI translation. To address the barrier to clinical deployment, we have formed MONAI Consortium, an open-source community which is building standards for AI deployment in healthcare institutions, and developing tools and infrastructure to facilitate their implementation. This report represents several years of weekly discussions and hands-on problem solving experience by groups of industry experts and clinicians in the MONAI Consortium. We identify barriers between AI-model development in research labs and subsequent clinical deployment and propose solutions. Our report provides guidance on processes which take an imaging AI model from development to clinical implementation in a healthcare institution. We discuss various AI integration points in a clinical Radiology workflow. We also present a taxonomy of Radiology AI use-cases. Through this report, we intend to educate the stakeholders in healthcare and AI (AI researchers, radiologists, imaging informaticists, and regulators) about cross-disciplinary challenges and possible solutions.
translated by 谷歌翻译