域的概括(DG)通过利用来自多个相关分布或域的标记培训数据在看不见的测试分布上表现良好的预测因子。为了实现这一目标,标准公式优化了所有可能域的最差性能。但是,由于最糟糕的转变在实践中的转变极不可能,这通常会导致过度保守的解决方案。实际上,最近的一项研究发现,没有DG算法在平均性能方面优于经验风险最小化。在这项工作中,我们认为DG既不是最坏的问题,也不是一个普通的问题,而是概率问题。为此,我们为DG提出了一个概率框架,我们称之为可能的域概括,其中我们的关键想法是在训练期间看到的分配变化应在测试时告诉我们可能的变化。为了实现这一目标,我们将培训和测试域明确关联为从同一基础元分布中获取的,并提出了一个新的优化问题 - 分数风险最小化(QRM) - 要求该预测因子以很高的概率概括。然后,我们证明了QRM:(i)产生的预测因子,这些预测因素将具有所需概率的新域(给定足够多的域和样本); (ii)随着概括的所需概率接近一个,恢复因果预测因子。在我们的实验中,我们引入了针对DG的更全面的以分位数评估协议,并表明我们的算法在真实和合成数据上的最先进基准都优于最先进的基准。
translated by 谷歌翻译
给定两个对象图像,我们如何在基本对象属性方面解释它们的差异?为了解决这个问题,我们提出了Align-efform-subtrats(ADS) - 解释对象差异的介入框架。通过利用图像空间中的语义对齐作为对基本对象属性的反事实干预,广告可以迭代量化并消除对象属性的差异。结果是一组“分解”的错误度量,这些误差度量可以解释基础属性方面的对象差异。实际和合成数据的实验说明了框架的功效。
translated by 谷歌翻译
学习以上对象的多对象场景表示是对机器智能的有希望的方法,促进了从视觉感觉数据的高级推理和控制。然而,对无监督以上的对象的场景表示的电流方法无法从场景的多个观察中聚合信息。结果,这些“单视图”方法仅基于单个2D观察(视图)形成其3D场景的表示。当然,这导致了几种不准确性,这些方法将受害者下降到单视空间歧义。为了解决此问题,我们提出了多视图和多目标网络(MULMON) - 一种通过利用多个视图学习准确,对象形式的对象场景的表示方法。为了索取跨视图的多对象多视图方案 - 维护对象对象的主要技术难度 - 云母迭代更新多个视图上的场景的潜在对象表示。为了确保这些迭代更新确实汇总空间信息以形成完整的3D场景理解,因此被要求在训练期间从新的观点来预测场景的外观。通过实验,我们表明云母更好地解决了空间歧义,而不是单视图 - 学习更准确和解散的对象表示 - 并且还实现了预测新颖观点的对象分段的新功能。
translated by 谷歌翻译
从同一场景的单个或多个低分辨率图像中获取高分辨率图像的过程对于现实世界图像和信号处理应用非常感兴趣。这项研究是关于探索基于深度学习的图像超分辨率算法的潜在用法,用于为驾驶汽车内车辆驾驶员监测系统产生高质量的热成像结果。在这项工作中,我们提出并开发了一种新型的多图像超分辨率复发性神经网络,以增强分辨率并提高从未冷却的热摄像机捕获的低分辨率热成像数据的质量。端到端完全卷积神经网络在室内环境条件下从刮擦上训练了30个不同受试者的新获得的热数据。热调谐超分辨率网络的有效性已定量验证,以及在6个不同受试者的测试数据上进行定性验证。该网络能够在验证数据集上达到4倍超分辨率的平均峰信号与噪声比为39.24,在定量和质量上都超过了双色插值。
translated by 谷歌翻译
贝叶斯核心通过构建数据点的一个较小的加权子集近似后验分布。任何在整个后验上运行的推理过程在计算上昂贵,都可以在核心上廉价地运行,其结果近似于完整数据上的结果。但是,当前方法受到大量运行时的限制,或者需要用户指定向完整后部的低成本近似值。我们提出了一种贝叶斯核心结构算法,该算法首先选择均匀随机的数据子集,然后使用新型的准Newton方法优化权重。我们的算法是一种易于实现的黑框方法,不需要用户指定低成本后近似。它是第一个在输出核心后部的KL差异上带有一般高概率构成的。实验表明,我们的方法可与具有可比的施工时间的替代方案相比,核心质量有显着改善,所需的存储成本和用户输入要少得多。
translated by 谷歌翻译