Practical applications employing deep learning must guarantee inference quality. However, we found that the inference quality of state-of-the-art and state-of-the-practice in practical applications has a long tail distribution. In the real world, many tasks have strict requirements for the quality of deep learning inference, such as safety-critical and mission-critical tasks. The fluctuation of inference quality seriously affects its practical applications, and the quality at the tail may lead to severe consequences. State-of-the-art and state-of-the-practice with outstanding inference quality designed and trained under loose constraints still have poor inference quality under constraints with practical application significance. On the one hand, the neural network models must be deployed on complex systems with limited resources. On the other hand, safety-critical and mission-critical tasks need to meet more metric constraints while ensuring high inference quality. We coin a new term, ``tail quality,'' to characterize this essential requirement and challenge. We also propose a new metric, ``X-Critical-Quality,'' to measure the inference quality under certain constraints. This article reveals factors contributing to the failure of using state-of-the-art and state-of-the-practice algorithms and systems in real scenarios. Therefore, we call for establishing innovative methodologies and tools to tackle this enormous challenge.
translated by 谷歌翻译
我们提出了一种简单而有效的自我训练方法,称为Stad,用于低资源关系提取。该方法首先根据教师模型所预测的概率将自动注释的实例分为两组:自信实例和不确定实例。与大多数以前的研究相反,主要的研究主要仅利用自信实例进行自我训练,我们利用了不确定的实例。为此,我们提出了一种从不确定实例中识别模棱两可但有用的实例的方法,然后将关系分为每个模棱两可的实例中的候选标签集和负标签集。接下来,我们建议对模棱两可的实例的负标签集和对自信实例的积极培训方法提出一种设定的培训方法。最后,提出了一种联合培训方法来在所有数据上构建最终关系提取系统。在两个广泛使用的数据集SEMEVAL2010任务8上进行的实验结果和低资源设置的重新攻击表明,这种新的自我训练方法确实在与几个竞争性自我训练系统相比时确实取得了显着和一致的改进。代码可在https://github.com/jjyunlp/stad上公开获取
translated by 谷歌翻译
近年来,自我监督学习(SSL)已广泛探索。特别是,生成的SSL在自然语言处理和其他AI领域(例如BERT和GPT的广泛采用)中获得了新的成功。尽管如此,对比度学习 - 严重依赖结构数据的增强和复杂的培训策略,这是图SSL的主要方法,而迄今为止,生成SSL在图形上的进度(尤其是GAES)尚未达到潜在的潜力。正如其他领域所承诺的。在本文中,我们确定并检查对GAE的发展产生负面影响的问题,包括其重建目标,训练鲁棒性和错误指标。我们提出了一个蒙版的图形自动编码器Graphmae,该图可以减轻这些问题,以预处理生成性自我监督图。我们建议没有重建图形结构,而是提议通过掩盖策略和缩放余弦误差将重点放在特征重建上,从而使GraphMae的强大训练受益。我们在21个公共数据集上进行了大量实验,以实现三个不同的图形学习任务。结果表明,Graphmae-A简单的图形自动编码器具有仔细的设计-CAN始终在对比度和生成性最新基准相比,始终产生优于性的表现。这项研究提供了对图自动编码器的理解,并证明了在图上的生成自我监督预训练的潜力。
translated by 谷歌翻译
As one of the prevalent methods to achieve automation systems, Imitation Learning (IL) presents a promising performance in a wide range of domains. However, despite the considerable improvement in policy performance, the corresponding research on the explainability of IL models is still limited. Inspired by the recent approaches in explainable artificial intelligence methods, we proposed a model-agnostic explaining framework for IL models called R2RISE. R2RISE aims to explain the overall policy performance with respect to the frames in demonstrations. It iteratively retrains the black-box IL model from the randomized masked demonstrations and uses the conventional evaluation outcome environment returns as the coefficient to build an importance map. We also conducted experiments to investigate three major questions concerning frames' importance equality, the effectiveness of the importance map, and connections between importance maps from different IL models. The result shows that R2RISE successfully distinguishes important frames from the demonstrations.
translated by 谷歌翻译
Anomaly detection is defined as discovering patterns that do not conform to the expected behavior. Previously, anomaly detection was mostly conducted using traditional shallow learning techniques, but with little improvement. As the emergence of graph neural networks (GNN), graph anomaly detection has been greatly developed. However, recent studies have shown that GNN-based methods encounter challenge, in that no graph anomaly detection algorithm can perform generalization on most datasets. To bridge the tap, we propose a multi-view fusion approach for graph anomaly detection (Mul-GAD). The view-level fusion captures the extent of significance between different views, while the feature-level fusion makes full use of complementary information. We theoretically and experimentally elaborate the effectiveness of the fusion strategies. For a more comprehensive conclusion, we further investigate the effect of the objective function and the number of fused views on detection performance. Exploiting these findings, our Mul-GAD is proposed equipped with fusion strategies and the well-performed objective function. Compared with other state-of-the-art detection methods, we achieve a better detection performance and generalization in most scenarios via a series of experiments conducted on Pubmed, Amazon Computer, Amazon Photo, Weibo and Books. Our code is available at https://github.com/liuyishoua/Mul-Graph-Fusion.
translated by 谷歌翻译
TOR(洋葱路由器)网络是一种广泛使用的开源匿名通信工具,滥用Tor使得很难监视在线犯罪的扩散,例如访问犯罪网站。大多数现有的TOR网络去匿名化的批准都在很大程度上依赖手动提取的功能,从而导致耗时和性能差。为了解决这些缺点,本文提出了一种神经表示方法,以根据分类算法识别网站指纹。我们构建了一个基于卷积神经网络(CNN)的新网站指纹攻击模型,并通过扩张和因果卷积,可以改善CNN的感知场并捕获输入数据的顺序特征。三个主流公共数据集的实验表明,与最先进的方法相比,提出的模型对网站指纹分类非常有效且有效,并将准确性提高了12.21%。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译