Incremental text-to-speech, also known as streaming TTS, has been increasingly applied to online speech applications that require ultra-low response latency to provide an optimal user experience. However, most of the existing speech synthesis pipelines deployed on GPU are still non-incremental, which uncovers limitations in high-concurrency scenarios, especially when the pipeline is built with end-to-end neural network models. To address this issue, we present a highly efficient approach to perform real-time incremental TTS on GPUs with Instant Request Pooling and Module-wise Dynamic Batching. Experimental results demonstrate that the proposed method is capable of producing high-quality speech with a first-chunk latency lower than 80ms under 100 QPS on a single NVIDIA A10 GPU and significantly outperforms the non-incremental twin in both concurrency and latency. Our work reveals the effectiveness of high-performance incremental TTS on GPUs.
translated by 谷歌翻译
图形神经网络(GNNS)将深度神经网络(DNN)的成功扩展到非欧几里德图数据,实现了各种任务的接地性能,例如节点分类和图形属性预测。尽管如此,现有系统效率低,培训数十亿节点和GPU的节点和边缘训练大图。主要瓶颈是准备GPU数据的过程 - 子图采样和特征检索。本文提出了一个分布式GNN培训系统的BGL,旨在解决一些关键思想的瓶颈。首先,我们提出了一种动态缓存引擎,以最小化特征检索流量。通过协同设计缓存政策和抽样顺序,我们发现低开销和高缓存命中率的精美斑点。其次,我们改善了曲线图分区算法,以减少子图采样期间的交叉分区通信。最后,仔细资源隔离减少了不同数据预处理阶段之间的争用。关于各种GNN模型和大图数据集的广泛实验表明,BGL平均明显优于现有的GNN训练系统20.68倍。
translated by 谷歌翻译
我们的目标是从规定的行动类别中解决从规定的行动类别创造多元化和自然人动作视频的有趣但具有挑战性的问题。关键问题在于能够在视觉外观中综合多种不同的运动序列。在本文中通过两步过程实现,该两步处理维持内部3D姿势和形状表示,Action2Motion和Motion2Video。 Action2Motion随机生成规定的动作类别的合理的3D姿势序列,该类别由Motion2Video进行处理和呈现,以形成2D视频。具体而言,Lie代数理论从事人类运动学的物理法之后代表自然人动作;开发了一种促进输出运动的分集的时间变化自动编码器(VAE)。此外,给定衣服人物的额外输入图像,提出了整个管道以提取他/她的3D详细形状,并在视频中呈现来自不同视图的合理运动。这是通过改进从单个2D图像中提取3D人类形状和纹理,索引,动画和渲染的现有方法来实现这一点,以形成人类运动的2D视频。它还需要3D人类运动数据集的策策和成果进行培训目的。彻底的经验实验,包括消融研究,定性和定量评估表现出我们的方法的适用性,并展示了解决相关任务的竞争力,其中我们的方法的组成部分与最先进的方式比较。
translated by 谷歌翻译
尽管图形神经网络(GNNS)已经取得了显着的准确性,但结果是否值得信赖仍未开发。以前的研究表明,许多现代神经网络对预测过度充满信心,然而,令人惊讶的是,我们发现GNN主要呈相反方向,即,GNN是不受自信的。因此,非常需要GNN的置信度校准。在本文中,我们通过设计拓扑知识的后HOC校准函数提出了一种新型值得信赖的GNN模型。具体而言,我们首先验证图形中的置信度分布具有同眼性的财产,而且这一发现激发了我们设计校准GNN模型(CAGCN)以学习校准功能。 CAGCN能够从GNN的Logits对每个节点的校准置信度获得独特的变换,同时,这种变换能够在类之间保留课程之间的顺序,满足精度保留的属性。此外,我们将校准GNN应用于自培训框架,表明可以通过校准的置信度获得更可靠的伪标签,并进一步提高性能。广泛的实验证明了我们所提出的模型在校准和准确性方面的有效性。
translated by 谷歌翻译
在线广告中,自动竞标已成为广告商通过简单地表达高级活动目标和约束来优化其首选广告性能指标的重要工具。以前的作品从单个代理的视图中设计了自动竞争工具,而不会在代理之间建模相互影响。在本文中,我们从分布式多功能代理人的角度来看,请考虑这个问题,并提出一个常规$ \强调{m} $ ulti - $ \强调{a} $ gent加强学习框架,以便为$ clown {a} $ uto - $ \ Underline {b} $ IDDIND,即MAAB,了解自动竞标策略。首先,我们调查自动招标代理商之间的竞争与合作关系,并提出了一个温度定期的信用分配,以建立混合合作竞争范式。通过在代理商中仔细开展竞争和合作权衡,我们可以达到均衡状态,不仅担保个人广告商的实用程序,而且保证了系统性能(即社会福利)。其次,为避免竞争低价潜在勾结行为的合作,我们进一步提交了律师代理,为每位专家设定个性化招标酒吧,然后减轻由于合作而导致的收入退化。第三,要在大型广告系统中部署MAAB,我们提出了一种平均现场方法。通过将具有与平均自动竞标代理商相同的广告商进行分组,大规模广告商之间的互动大大简化,使得培训MAAB有效地培训。在离线工业数据集和阿里巴巴广告平台上进行了广泛的实验表明,我们的方法在社会福利和收入方面优于几种基线方法。
translated by 谷歌翻译
关于图表的深度学习最近吸引了重要的兴趣。然而,大多数作品都侧重于(半)监督学习,导致缺点包括重标签依赖,普遍性差和弱势稳健性。为了解决这些问题,通过良好设计的借口任务在不依赖于手动标签的情况下提取信息知识的自我监督学习(SSL)已成为图形数据的有希望和趋势的学习范例。与计算机视觉和自然语言处理等其他域的SSL不同,图表上的SSL具有独家背景,设计理念和分类。在图表的伞下自我监督学习,我们对采用图表数据采用SSL技术的现有方法及时及全面的审查。我们构建一个统一的框架,数学上正式地规范图表SSL的范例。根据借口任务的目标,我们将这些方法分为四类:基于生成的,基于辅助性的,基于对比的和混合方法。我们进一步描述了曲线图SSL在各种研究领域的应用,并总结了绘图SSL的常用数据集,评估基准,性能比较和开源代码。最后,我们讨论了该研究领域的剩余挑战和潜在的未来方向。
translated by 谷歌翻译
本文提出了一种有效融合多暴露输入并使用未配对数据集生成高质量的高动态范围(HDR)图像的方法。基于深度学习的HDR图像生成方法在很大程度上依赖于配对的数据集。地面真相图像在生成合理的HDR图像中起着领导作用。没有地面真理的数据集很难应用于训练深层神经网络。最近,在没有配对示例的情况下,生成对抗网络(GAN)证明了它们将图像从源域X转换为目标域y的潜力。在本文中,我们提出了一个基于GAN的网络,用于解决此类问题,同时产生愉快的HDR结果,名为Uphdr-Gan。提出的方法放松了配对数据集的约束,并了解了从LDR域到HDR域的映射。尽管丢失了这些对数据,但UPHDR-GAN可以借助修改后的GAN丢失,改进的歧视器网络和有用的初始化阶段正确处理由移动对象或未对准引起的幽灵伪像。所提出的方法保留了重要区域的细节并提高了总图像感知质量。与代表性方法的定性和定量比较证明了拟议的UPHDR-GAN的优越性。
translated by 谷歌翻译
We present a machine-learning framework to accurately characterize morphologies of Active Galactic Nucleus (AGN) host galaxies within $z<1$. We first use PSFGAN to decouple host galaxy light from the central point source, then we invoke the Galaxy Morphology Network (GaMorNet) to estimate whether the host galaxy is disk-dominated, bulge-dominated, or indeterminate. Using optical images from five bands of the HSC Wide Survey, we build models independently in three redshift bins: low $(0<z<0.25)$, medium $(0.25<z<0.5)$, and high $(0.5<z<1.0)$. By first training on a large number of simulated galaxies, then fine-tuning using far fewer classified real galaxies, our framework predicts the actual morphology for $\sim$ $60\%-70\%$ host galaxies from test sets, with a classification precision of $\sim$ $80\%-95\%$, depending on redshift bin. Specifically, our models achieve disk precision of $96\%/82\%/79\%$ and bulge precision of $90\%/90\%/80\%$ (for the 3 redshift bins), at thresholds corresponding to indeterminate fractions of $30\%/43\%/42\%$. The classification precision of our models has a noticeable dependency on host galaxy radius and magnitude. No strong dependency is observed on contrast ratio. Comparing classifications of real AGNs, our models agree well with traditional 2D fitting with GALFIT. The PSFGAN+GaMorNet framework does not depend on the choice of fitting functions or galaxy-related input parameters, runs orders of magnitude faster than GALFIT, and is easily generalizable via transfer learning, making it an ideal tool for studying AGN host galaxy morphology in forthcoming large imaging survey.
translated by 谷歌翻译
Due to the usefulness in data enrichment for data analysis tasks, joinable table discovery has become an important operation in data lake management. Existing approaches target equi-joins, the most common way of combining tables for creating a unified view, or semantic joins, which tolerate misspellings and different formats to deliver more join results. They are either exact solutions whose running time is linear in the sizes of query column and target table repository or approximate solutions lacking precision. In this paper, we propose Deepjoin, a deep learning model for accurate and efficient joinable table discovery. Our solution is an embedding-based retrieval, which employs a pre-trained language model (PLM) and is designed as one framework serving both equi- and semantic joins. We propose a set of contextualization options to transform column contents to a text sequence. The PLM reads the sequence and is fine-tuned to embed columns to vectors such that columns are expected to be joinable if they are close to each other in the vector space. Since the output of the PLM is fixed in length, the subsequent search procedure becomes independent of the column size. With a state-of-the-art approximate nearest neighbor search algorithm, the search time is logarithmic in the repository size. To train the model, we devise the techniques for preparing training data as well as data augmentation. The experiments on real datasets demonstrate that by training on a small subset of a corpus, Deepjoin generalizes to large datasets and its precision consistently outperforms other approximate solutions'. Deepjoin is even more accurate than an exact solution to semantic joins when evaluated with labels from experts. Moreover, when equipped with a GPU, Deepjoin is up to two orders of magnitude faster than existing solutions.
translated by 谷歌翻译
Contrastive learning (CL), which can extract the information shared between different contrastive views, has become a popular paradigm for vision representation learning. Inspired by the success in computer vision, recent work introduces CL into graph modeling, dubbed as graph contrastive learning (GCL). However, generating contrastive views in graphs is more challenging than that in images, since we have little prior knowledge on how to significantly augment a graph without changing its labels. We argue that typical data augmentation techniques (e.g., edge dropping) in GCL cannot generate diverse enough contrastive views to filter out noises. Moreover, previous GCL methods employ two view encoders with exactly the same neural architecture and tied parameters, which further harms the diversity of augmented views. To address this limitation, we propose a novel paradigm named model augmented GCL (MA-GCL), which will focus on manipulating the architectures of view encoders instead of perturbing graph inputs. Specifically, we present three easy-to-implement model augmentation tricks for GCL, namely asymmetric, random and shuffling, which can respectively help alleviate high- frequency noises, enrich training instances and bring safer augmentations. All three tricks are compatible with typical data augmentations. Experimental results show that MA-GCL can achieve state-of-the-art performance on node classification benchmarks by applying the three tricks on a simple base model. Extensive studies also validate our motivation and the effectiveness of each trick. (Code, data and appendix are available at https://github.com/GXM1141/MA-GCL. )
translated by 谷歌翻译