Contrastive learning (CL), which can extract the information shared between different contrastive views, has become a popular paradigm for vision representation learning. Inspired by the success in computer vision, recent work introduces CL into graph modeling, dubbed as graph contrastive learning (GCL). However, generating contrastive views in graphs is more challenging than that in images, since we have little prior knowledge on how to significantly augment a graph without changing its labels. We argue that typical data augmentation techniques (e.g., edge dropping) in GCL cannot generate diverse enough contrastive views to filter out noises. Moreover, previous GCL methods employ two view encoders with exactly the same neural architecture and tied parameters, which further harms the diversity of augmented views. To address this limitation, we propose a novel paradigm named model augmented GCL (MA-GCL), which will focus on manipulating the architectures of view encoders instead of perturbing graph inputs. Specifically, we present three easy-to-implement model augmentation tricks for GCL, namely asymmetric, random and shuffling, which can respectively help alleviate high- frequency noises, enrich training instances and bring safer augmentations. All three tricks are compatible with typical data augmentations. Experimental results show that MA-GCL can achieve state-of-the-art performance on node classification benchmarks by applying the three tricks on a simple base model. Extensive studies also validate our motivation and the effectiveness of each trick. (Code, data and appendix are available at https://github.com/GXM1141/MA-GCL. )
translated by 谷歌翻译
Graph Contrastive Learning (GCL) has recently drawn much research interest for learning generalizable node representations in a self-supervised manner. In general, the contrastive learning process in GCL is performed on top of the representations learned by a graph neural network (GNN) backbone, which transforms and propagates the node contextual information based on its local neighborhoods. However, nodes sharing similar characteristics may not always be geographically close, which poses a great challenge for unsupervised GCL efforts due to their inherent limitations in capturing such global graph knowledge. In this work, we address their inherent limitations by proposing a simple yet effective framework -- Simple Neural Networks with Structural and Semantic Contrastive Learning} (S^3-CL). Notably, by virtue of the proposed structural and semantic contrastive learning algorithms, even a simple neural network can learn expressive node representations that preserve valuable global structural and semantic patterns. Our experiments demonstrate that the node representations learned by S^3-CL achieve superior performance on different downstream tasks compared with the state-of-the-art unsupervised GCL methods. Implementation and more experimental details are publicly available at \url{https://github.com/kaize0409/S-3-CL.}
translated by 谷歌翻译
Contrastive learning methods based on InfoNCE loss are popular in node representation learning tasks on graph-structured data. However, its reliance on data augmentation and its quadratic computational complexity might lead to inconsistency and inefficiency problems. To mitigate these limitations, in this paper, we introduce a simple yet effective contrastive model named Localized Graph Contrastive Learning (Local-GCL in short). Local-GCL consists of two key designs: 1) We fabricate the positive examples for each node directly using its first-order neighbors, which frees our method from the reliance on carefully-designed graph augmentations; 2) To improve the efficiency of contrastive learning on graphs, we devise a kernelized contrastive loss, which could be approximately computed in linear time and space complexity with respect to the graph size. We provide theoretical analysis to justify the effectiveness and rationality of the proposed methods. Experiments on various datasets with different scales and properties demonstrate that in spite of its simplicity, Local-GCL achieves quite competitive performance in self-supervised node representation learning tasks on graphs with various scales and properties.
translated by 谷歌翻译
图对比度学习(GCL)一直是图形自学学习的新兴解决方案。 GCL的核心原理是在正视图中降低样品之间的距离,但在负视图中增加样品之间的距离。在实现有希望的性能的同时,当前的GCL方法仍然受到两个局限性:(1)增强的不可控制的有效性,该图扰动可能会产生针对语义和图形数据的特征流程的无效视图; (2)不可靠的二进制对比理由,对于非欧几里得图数据而言,难以确定构造观点的积极性和负面性。为了应对上述局限性,我们提出了一个新的对比度学习范式,即图形软对比度学习(GSCL),该范例通过排名的社区无需任何增强和二进制对比符合性,在较细性的范围内进行对比度学习。 GSCL建立在图接近的基本假设上,即连接的邻居比遥远的节点更相似。具体而言,我们在配对和列表的封闭式排名中,以保留附近的相对排名关系。此外,随着邻里规模的指数增长,考虑了更多的啤酒花,我们提出了提高学习效率的邻里抽样策略。广泛的实验结果表明,我们提出的GSCL可以始终如一地在各种公共数据集上实现与GCL相当复杂的各种公共数据集的最新性能。
translated by 谷歌翻译
图形对比学习(GCL)已成为学习图形无监督表示的有效工具。关键思想是通过数据扩展最大化每个图的两个增强视图之间的一致性。现有的GCL模型主要集中在给定情况下的所有图表上应用\ textit {相同的增强策略}。但是,实际图通常不是单态,而是各种本质的抽象。即使在相同的情况下(例如,大分子和在线社区),不同的图形可能需要各种增强来执行有效的GCL。因此,盲目地增强所有图表而不考虑其个人特征可能会破坏GCL艺术的表现。 {a} u Mentigation(GPA),通过允许每个图选择自己的合适的增强操作来推进常规GCL。本质上,GPA根据其拓扑属性和节点属性通过可学习的增强选择器为每个图定制了量身定制的增强策略,该策略是插件模块,可以通过端到端的下游GCL型号有效地训练。来自不同类型和域的11个基准图的广泛实验证明了GPA与最先进的竞争对手的优势。此外,通过可视化不同类型的数据集中学习的增强分布,我们表明GPA可以有效地识别最合适的数据集每个图的增强基于其特征。
translated by 谷歌翻译
图对比度学习(GCL)改善了图表的学习,从而导致SOTA在各种下游任务上。图扩大步骤是GCL的重要但几乎没有研究的步骤。在本文中,我们表明,通过图表增强获得的节点嵌入是高度偏差的,在某种程度上限制了从学习下游任务的学习区分特征的对比模型。隐藏功能(功能增强)。受到所谓矩阵草图的启发,我们提出了Costa,这是GCL的一种新颖的协变功能空间增强框架,该框架通过维护原始功能的``好草图''来生成增强功能。为了强调Costa的特征增强功能的优势,我们研究了一个保存记忆和计算的单视图设置(除了多视图ONE)。我们表明,与基于图的模型相比,带有Costa的功能增强功能可比较/更好。
translated by 谷歌翻译
对比度学习是图表学习中的有效无监督方法,对比度学习的关键组成部分在于构建正和负样本。以前的方法通常利用图中节点的接近度作为原理。最近,基于数据增强的对比度学习方法已进步以显示视觉域中的强大力量,一些作品将此方法从图像扩展到图形。但是,与图像上的数据扩展不同,图上的数据扩展远不那么直观,而且很难提供高质量的对比样品,这为改进留出了很大的空间。在这项工作中,通过引入一个对抗性图视图以进行数据增强,我们提出了一种简单但有效的方法,对抗图对比度学习(ARIEL),以在合理的约束中提取信息性的对比样本。我们开发了一种称为稳定训练的信息正则化的新技术,并使用子图抽样以进行可伸缩。我们通过将每个图形实例视为超级节点,从节点级对比度学习到图级。 Ariel始终优于在现实世界数据集上的节点级别和图形级分类任务的当前图对比度学习方法。我们进一步证明,面对对抗性攻击,Ariel更加强大。
translated by 谷歌翻译
Existing graph contrastive learning methods rely on augmentation techniques based on random perturbations (e.g., randomly adding or dropping edges and nodes). Nevertheless, altering certain edges or nodes can unexpectedly change the graph characteristics, and choosing the optimal perturbing ratio for each dataset requires onerous manual tuning. In this paper, we introduce Implicit Graph Contrastive Learning (iGCL), which utilizes augmentations in the latent space learned from a Variational Graph Auto-Encoder by reconstructing graph topological structure. Importantly, instead of explicitly sampling augmentations from latent distributions, we further propose an upper bound for the expected contrastive loss to improve the efficiency of our learning algorithm. Thus, graph semantics can be preserved within the augmentations in an intelligent way without arbitrary manual design or prior human knowledge. Experimental results on both graph-level and node-level tasks show that the proposed method achieves state-of-the-art performance compared to other benchmarks, where ablation studies in the end demonstrate the effectiveness of modules in iGCL.
translated by 谷歌翻译
Inspired by the impressive success of contrastive learning (CL), a variety of graph augmentation strategies have been employed to learn node representations in a self-supervised manner. Existing methods construct the contrastive samples by adding perturbations to the graph structure or node attributes. Although impressive results are achieved, it is rather blind to the wealth of prior information assumed: with the increase of the perturbation degree applied on the original graph, 1) the similarity between the original graph and the generated augmented graph gradually decreases; 2) the discrimination between all nodes within each augmented view gradually increases. In this paper, we argue that both such prior information can be incorporated (differently) into the contrastive learning paradigm following our general ranking framework. In particular, we first interpret CL as a special case of learning to rank (L2R), which inspires us to leverage the ranking order among positive augmented views. Meanwhile, we introduce a self-ranking paradigm to ensure that the discriminative information among different nodes can be maintained and also be less altered to the perturbations of different degrees. Experiment results on various benchmark datasets verify the effectiveness of our algorithm compared with the supervised and unsupervised models.
translated by 谷歌翻译
Recently, contrastive learning (CL) has emerged as a successful method for unsupervised graph representation learning. Most graph CL methods first perform stochastic augmentation on the input graph to obtain two graph views and maximize the agreement of representations in the two views. Despite the prosperous development of graph CL methods, the design of graph augmentation schemes-a crucial component in CL-remains rarely explored. We argue that the data augmentation schemes should preserve intrinsic structures and attributes of graphs, which will force the model to learn representations that are insensitive to perturbation on unimportant nodes and edges. However, most existing methods adopt uniform data augmentation schemes, like uniformly dropping edges and uniformly shuffling features, leading to suboptimal performance. In this paper, we propose a novel graph contrastive representation learning method with adaptive augmentation that incorporates various priors for topological and semantic aspects of the graph. Specifically, on the topology level, we design augmentation schemes based on node centrality measures to highlight important connective structures. On the node attribute level, we corrupt node features by adding more noise to unimportant node features, to enforce the model to recognize underlying semantic information. We perform extensive experiments of node classification on a variety of real-world datasets. Experimental results demonstrate that our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts, which validates the effectiveness of the proposed contrastive framework with adaptive augmentation. CCS CONCEPTS• Computing methodologies → Unsupervised learning; Neural networks; Learning latent representations.
translated by 谷歌翻译
对比学习已被广​​泛应用于图形表示学习,其中观测发生器在产生有效的对比样本方面发挥着重要作用。大多数现有的对比学习方法采用预定义的视图生成方法,例如节点滴或边缘扰动,这通常不能适应输入数据或保持原始语义结构。为了解决这个问题,我们提出了一份名为自动化图形对比学习(AutoGCL)的小说框架。具体而言,AutoGCL采用一组由自动增强策略协调的一组学习图形视图生成器,其中每个图形视图生成器都会学习输入调节的图形的概率分布。虽然AutoGCL中的图形视图发生器在生成每个对比样本中保留原始图的最代表性结构,但自动增强学会在整个对比学习程序中介绍适当的增强差异的政策。此外,AutoGCL采用联合培训策略,以培训学习的视图发生器,图形编码器和分类器以端到端的方式,导致拓扑异质性,在产生对比样本时的语义相似性。关于半监督学习,无监督学习和转移学习的广泛实验展示了我们在图形对比学习中的最先进的自动支持者框架的优越性。此外,可视化结果进一步证实,与现有的视图生成方法相比,可学习的视图发生器可以提供更紧凑和语义有意义的对比样本。
translated by 谷歌翻译
We introduce a self-supervised approach for learning node and graph level representations by contrasting structural views of graphs. We show that unlike visual representation learning, increasing the number of views to more than two or contrasting multi-scale encodings do not improve performance, and the best performance is achieved by contrasting encodings from first-order neighbors and a graph diffusion. We achieve new state-ofthe-art results in self-supervised learning on 8 out of 8 node and graph classification benchmarks under the linear evaluation protocol. For example, on Cora (node) and Reddit-Binary (graph) classification benchmarks, we achieve 86.8% and 84.5% accuracy, which are 5.5% and 2.4% relative improvements over previous state-of-the-art. When compared to supervised baselines, our approach outperforms them in 4 out of 8 benchmarks.
translated by 谷歌翻译
无监督的图形表示学习是图形数据的非琐碎主题。在结构化数据的无监督代表学习中对比学习和自我监督学习的成功激发了图表上的类似尝试。使用对比损耗的当前无监督的图形表示学习和预培训主要基于手工增强图数据之间的对比度。但是,由于不可预测的不变性,图数据增强仍然没有很好地探索。在本文中,我们提出了一种新颖的协作图形神经网络对比学习框架(CGCL),它使用多个图形编码器来观察图形。不同视图观察的特征充当了图形编码器之间对比学习的图表增强,避免了任何扰动以保证不变性。 CGCL能够处理图形级和节点级表示学习。广泛的实验表明CGCL在无监督的图表表示学习中的优势以及图形表示学习的手工数据增强组合的非必要性。
translated by 谷歌翻译
对比度学习是图表学习中有效的无监督方法。最近,基于数据增强的对比度学习方法已从图像扩展到图形。但是,大多数先前的作品都直接根据为图像设计的模型进行了调整。与图像上的数据增强不同,图表上的数据扩展远不那么直观,而且很难提供高质量的对比样本,这是对比度学习模型的性能的关键。这为改进现有图形对比学习框架留出了很多空间。在这项工作中,通过引入对抗图视图和信息正常化程序,我们提出了一种简单但有效的方法,即对逆向对比度学习(ARIEL),以在合理的约束中提取信息性的对比样本。它始终优于各种现实世界数据集的节点分类任务中当前的图形对比度学习方法,并进一步提高了图对比度学习的鲁棒性。
translated by 谷歌翻译
灵感来自最近应用于图像上的自我监督方法的成功,图形结构数据的自我监督学习已经看到迅速增长,特别是基于增强的对比方法。但是,我们认为没有精心设计的增强技术,图形上的增强可能是任意行为的,因为图形的底层语义可以急剧地改变。因此,现有增强的方法的性能高度依赖于增强方案的选择,即与增强相关联的超级参数。在本文中,我们提出了一种名为AFGRL的图表的一种新的增强自我监督学习框架。具体地,我们通过发现与图形共享本地结构信息和全局语义的节点来生成图表的替代视图。各种数据集的各种节点级任务,即节点分类,群集和相似性搜索的广泛实验证明了AFGRL的优越性。 AFGRL的源代码可在https://github.com/namkyeong/afgrl中获得。
translated by 谷歌翻译
图表是一个宇宙数据结构,广泛用于组织现实世界中的数据。像交通网络,社交和学术网络这样的各种实际网络网络可以由图表代表。近年来,目睹了在网络中代表顶点的快速发展,进入低维矢量空间,称为网络表示学习。表示学习可以促进图形数据上的新算法的设计。在本调查中,我们对网络代表学习的当前文献进行了全面审查。现有算法可以分为三组:浅埋模型,异构网络嵌入模型,图形神经网络的模型。我们为每个类别审查最先进的算法,并讨论这些算法之间的基本差异。调查的一个优点是,我们系统地研究了不同类别的算法底层的理论基础,这提供了深入的见解,以更好地了解网络表示学习领域的发展。
translated by 谷歌翻译
对比度学习(CL)已成为无监督表示学习的主要技术,该技术将锚固的增强版本相互接近(正样本),并将其他样品(负)(负)的嵌入到分开。正如最近的研究所揭示的那样,CL可以受益于艰苦的负面因素(与锚定的负面因素)。但是,当我们在图对比度学习中采用现有的其他域的硬采矿技术(GCL)时,我们会观察到有限的好处。我们对该现象进行实验和理论分析,发现它可以归因于图神经网络(GNNS)的信息传递。与其他域中的CL不同,大多数硬否负面因素是潜在的假否(与锚共享同一类的负面因素),如果仅根据锚和本身之间的相似性选择它们,这将不必要地推开同一类的样本。为了解决这种缺陷,我们提出了一种称为\ textbf {progcl}的有效方法,以估计否定的概率是真实的,这构成了更合适的衡量否定性与否定性的衡量标准。此外,我们设计了两个方案(即\ textbf {progcl-weight}和\ textbf {progcl-mix}),以提高GCL的性能。广泛的实验表明,POGCL对基本GCL方法具有显着和一致的改进,并在几个无监督的基准上产生多个最新的结果,甚至超过了受监督的基准。此外,Progcl很容易将基于负面的GCL方法插入以改进性能的GCL方法。我们以\ textColor {magenta} {\ url {https://github.com/junxia97/progcl}}}发布代码。
translated by 谷歌翻译
尽管有关超图的机器学习吸引了很大的关注,但大多数作品都集中在(半)监督的学习上,这可能会导致繁重的标签成本和不良的概括。最近,对比学习已成为一种成功的无监督表示学习方法。尽管其他领域中对比度学习的发展繁荣,但对超图的对比学习仍然很少探索。在本文中,我们提出了Tricon(三个方向对比度学习),这是对超图的对比度学习的一般框架。它的主要思想是三个方向对比度,具体来说,它旨在在两个增强视图中最大化同一节点之间的协议(a),(b)在同一节点之间以及(c)之间,每个组之间的成员及其成员之间的协议(b) 。加上简单但令人惊讶的有效数据增强和负抽样方案,这三种形式的对比使Tricon能够在节点嵌入中捕获显微镜和介观结构信息。我们使用13种基线方法,5个数据集和两个任务进行了广泛的实验,这证明了Tricon的有效性,最明显的是,Tricon始终优于无监督的竞争对手,而且(半)受监督的竞争对手,大多数是由大量的节点分类的大量差额。
translated by 谷歌翻译
本文研究了用于无监督场景的图形神经网络(GNN)的节点表示。具体地,我们推导了理论分析,并在不适当定义的监督信号时,在不同的图形数据集中提供关于GNN的非稳定性能的实证演示。 GNN的性能取决于节点特征平滑度和图形结构的局部性。为了平滑通过图形拓扑和节点功能测量的节点接近度的差异,我们提出了帆 - 一个小说\下划线{s} elf- \下划线{a} u段图对比度\下划线{i} ve \ nignline {l}收入框架,使用两个互补的自蒸馏正则化模块,\ emph {Ie},内部和图间知识蒸馏。我们展示了帆在各种图形应用中的竞争性能。即使使用单个GNN层,Sail也在各种基准数据集中持续竞争或更好的性能,与最先进的基线相比。
translated by 谷歌翻译
在异质图上的自我监督学习(尤其是对比度学习)方法可以有效地摆脱对监督数据的依赖。同时,大多数现有的表示学习方法将异质图嵌入到欧几里得或双曲线的单个几何空间中。这种单个几何视图通常不足以观察由于其丰富的语义和复杂结构而观察到异质图的完整图片。在这些观察结果下,本文提出了一种新型的自我监督学习方法,称为几何对比度学习(GCL),以更好地表示监督数据是不可用时的异质图。 GCL同时观察了从欧几里得和双曲线观点的异质图,旨在强烈合并建模丰富的语义和复杂结构的能力,这有望为下游任务带来更多好处。 GCL通过在局部局部和局部全球语义水平上对比表示两种几何视图之间的相互信息。在四个基准数据集上进行的广泛实验表明,在三个任务上,所提出的方法在包括节点分类,节点群集和相似性搜索在内的三个任务上都超过了强基础,包括无监督的方法和监督方法。
translated by 谷歌翻译