Informed consent has become increasingly salient for data privacy and its regulation. Entities from governments to for-profit companies have addressed concerns about data privacy with policies that enumerate the conditions for personal data storage and transfer. However, increased enumeration of and transparency in data privacy policies has not improved end-users' comprehension of how their data might be used: not only are privacy policies written in legal language that users may struggle to understand, but elements of these policies may compose in such a way that the consequences of the policy are not immediately apparent. We present a framework that uses Answer Set Programming (ASP) -- a type of logic programming -- to formalize privacy policies. Privacy policies thus become constraints on a narrative planning space, allowing end-users to forward-simulate possible consequences of the policy in terms of actors having roles and taking actions in a domain. We demonstrate through the example of the Health Insurance Portability and Accountability Act (HIPAA) how to use the system in various ways, including asking questions about possibilities and identifying which clauses of the law are broken by a given sequence of events.
translated by 谷歌翻译
Can we make virtual characters in a scene interact with their surrounding objects through simple instructions? Is it possible to synthesize such motion plausibly with a diverse set of objects and instructions? Inspired by these questions, we present the first framework to synthesize the full-body motion of virtual human characters performing specified actions with 3D objects placed within their reach. Our system takes as input textual instructions specifying the objects and the associated intentions of the virtual characters and outputs diverse sequences of full-body motions. This is in contrast to existing work, where full-body action synthesis methods generally do not consider object interactions, and human-object interaction methods focus mainly on synthesizing hand or finger movements for grasping objects. We accomplish our objective by designing an intent-driven full-body motion generator, which uses a pair of decoupled conditional variational autoencoders (CVAE) to learn the motion of the body parts in an autoregressive manner. We also optimize for the positions of the objects with six degrees of freedom (6DoF) such that they plausibly fit within the hands of the synthesized characters. We compare our proposed method with the existing methods of motion synthesis and establish a new and stronger state-of-the-art for the task of intent-driven motion synthesis. Through a user study, we further show that our synthesized full-body motions appear more realistic to the participants in more than 80% of scenarios compared to the current state-of-the-art methods, and are perceived to be as good as the ground truth on several occasions.
translated by 谷歌翻译
Conventional methods for human motion synthesis are either deterministic or struggle with the trade-off between motion diversity and motion quality. In response to these limitations, we introduce MoFusion, i.e., a new denoising-diffusion-based framework for high-quality conditional human motion synthesis that can generate long, temporally plausible, and semantically accurate motions based on a range of conditioning contexts (such as music and text). We also present ways to introduce well-known kinematic losses for motion plausibility within the motion diffusion framework through our scheduled weighting strategy. The learned latent space can be used for several interactive motion editing applications -- like inbetweening, seed conditioning, and text-based editing -- thus, providing crucial abilities for virtual character animation and robotics. Through comprehensive quantitative evaluations and a perceptual user study, we demonstrate the effectiveness of MoFusion compared to the state of the art on established benchmarks in the literature. We urge the reader to watch our supplementary video and visit https://vcai.mpi-inf.mpg.de/projects/MoFusion.
translated by 谷歌翻译
With a few exceptions, work in offline reinforcement learning (RL) has so far assumed that there is no confounding. In a classical regression setting, confounders introduce omitted variable bias and inhibit the identification of causal effects. In offline RL, they prevent the identification of a policy's value, and therefore make it impossible to perform policy improvement. Using conventional methods in offline RL in the presence of confounding can therefore not only lead to poor decisions and poor policies, but can also have disastrous effects in applications such as healthcare and education. We provide approaches for both off-policy evaluation (OPE) and local policy optimization in the settings of i.i.d. and global confounders. Theoretical and empirical results confirm the validity and viability of these methods.
translated by 谷歌翻译
通过将云资源转换为用户的邻近来减轻云计算所拥有的限制来引入雾计算。雾环境使其有限的资源可用于大量用户部署其无服务器的应用程序,由多个无服务器功能组成。引入迷雾环境背后的主要意图是通过其有限的资源来满足延迟和位置敏感无服务器应用程序的需求。最近的研究主要侧重于将最大资源分配给来自FOG节点的这些应用程序,而不是充分利用云环境。这引入了在将资源提供给最大连接用户的负面影响。为了解决此问题,在本文中,我们调查了用户请求的最佳百分比,该请求应由雾和云实现。因此,我们提出了Def-Driel,系统地部署了使用深度增强学习的雾和云环境中无服务器功能,使用若干现实生活参数,例如来自附近FOG节点,用户的优先级的用户的距离和延迟,与最近的相关算法相比,无服务器应用程序的优先级及其资源需求等。从模拟和比较结果,可以清楚地观察到其对其他算法的优势及其对现实生活场景的适用性。
translated by 谷歌翻译