The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Deep Neural Networks (DNNs) have been ubiquitously adopted in internet of things and are becoming an integral of our daily life. When tackling the evolving learning tasks in real world, such as classifying different types of objects, DNNs face the challenge to continually retrain themselves according to the tasks on different edge devices. Federated continual learning is a promising technique that offers partial solutions but yet to overcome the following difficulties: the significant accuracy loss due to the limited on-device processing, the negative knowledge transfer caused by the limited communication of non-IID data, and the limited scalability on the tasks and edge devices. In this paper, we propose FedKNOW, an accurate and scalable federated continual learning framework, via a novel concept of signature task knowledge. FedKNOW is a client side solution that continuously extracts and integrates the knowledge of signature tasks which are highly influenced by the current task. Each client of FedKNOW is composed of a knowledge extractor, a gradient restorer and, most importantly, a gradient integrator. Upon training for a new task, the gradient integrator ensures the prevention of catastrophic forgetting and mitigation of negative knowledge transfer by effectively combining signature tasks identified from the past local tasks and other clients' current tasks through the global model. We implement FedKNOW in PyTorch and extensively evaluate it against state-of-the-art techniques using popular federated continual learning benchmarks. Extensive evaluation results on heterogeneous edge devices show that FedKNOW improves model accuracy by 63.24% without increasing model training time, reduces communication cost by 34.28%, and achieves more improvements under difficult scenarios such as large numbers of tasks or clients, and training different complex networks.
translated by 谷歌翻译
Humans can classify an unseen category by reasoning on its language explanations. This ability is owing to the compositional nature of language: we can combine previously seen concepts to describe the new category. For example, we might describe mavens as "a kind of large birds with black feathers", so that others can use their knowledge of concepts "large birds" and "black feathers" to recognize a maven. Inspired by this observation, in this work we tackle zero-shot classification task by logically parsing and reasoning on natural language explanations. To this end, we propose the framework CLORE (Classification by LOgical Reasoning on Explanations). While previous methods usually regard textual information as implicit features, CLORE parses the explanations into logical structure the and then reasons along this structure on the input to produce a classification score. Experimental results on explanation-based zero-shot classification benchmarks demonstrate that CLORE is superior to baselines, mainly because it performs better on tasks requiring more logical reasoning. Alongside classification decisions, CLORE can provide the logical parsing and reasoning process as a form of rationale. Through empirical analysis we demonstrate that CLORE is also less affected by linguistic biases than baselines.
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
最近,许多方法通过基于伪标签的对比学习来解决无监督的域自适应人员重新识别(UDA RE-ID)问题。在培训期间,通过简单地平均来自具有相同伪标签的集群的所有实例特征来获得UNI-Firedroid表示。然而,由于群集结果不完美的聚类结果,群集可能包含具有不同标识(标签噪声)的图像,这使得UNI质心表示不适当。在本文中,我们介绍了一种新的多质心存储器(MCM),以在群集中自适应地捕获不同的身份信息。 MCM可以通过为查询图像选择适当的正/负质心来有效地减轻标签噪声问题。此外,我们进一步提出了两种策略来改善对比学习过程。首先,我们介绍了一个域特定的对比度学习(DSCL)机制,通过仅通过相同域进行比较样本来完全探索局部信息。其次,我们提出了二阶最近的插值(Soni)以获得丰富和信息性的负样本。我们将MCM,DSCL和Soni集成到一个名为Multi-Firedroid表示网络(MCRN)的统一框架中。广泛的实验证明了MCRN在多个UDA重新ID任务上的最先进方法和完全无监督的重新ID任务的优越性。
translated by 谷歌翻译
神经网络通常使预测依赖于数据集的虚假相关性,而不是感兴趣的任务的内在特性,面对分布外(OOD)测试数据的急剧下降。现有的De-Bias学习框架尝试通过偏置注释捕获特定的DataSet偏差,它们无法处理复杂的“ood方案”。其他人在低能力偏置模型或损失上隐含地识别数据集偏置,但在训练和测试数据来自相同分布时,它们会降低。在本文中,我们提出了一般的贪婪去偏见学习框架(GGD),它贪婪地训练偏置模型和基础模型,如功能空间中的梯度下降。它鼓励基础模型专注于用偏置模型难以解决的示例,从而仍然在测试阶段中的杂散相关性稳健。 GGD在很大程度上提高了各种任务的模型的泛化能力,但有时会过度估计偏置水平并降低在分配测试。我们进一步重新分析了GGD的集合过程,并将课程正规化为由课程学习启发的GGD,这取得了良好的分配和分发性能之间的权衡。对图像分类的广泛实验,对抗问题应答和视觉问题应答展示了我们方法的有效性。 GGD可以在特定于特定于任务的偏置模型的设置下学习更强大的基础模型,其中具有现有知识和自组合偏置模型而无需先验知识。
translated by 谷歌翻译
深度神经网络(DNN)已成为移动和嵌入式系统中的普遍存在的技术,用于图像/对象识别和分类。执行多个DNN的趋势同时加剧了资源受限移动设备上满足严格延迟/准确性要求的现有限制。现有技术通过根据资源动态缩放模型大小来探索精度资源权衡的光。然而,这种模型缩放方法接近迫在眉睫的挑战:(i)模型尺寸的大空间探索,(ii)对不同模型组合的培训时间非常长。在本文中,我们介绍了Legodnn,一种用于在移动视觉系统中运行多DNN工作负载的轻质块粒度缩放解决方案。 Legodnn仅通过在DNN中提取和培训少数常见块(例如,在VGG和RENET中的VGG和8中的8中)来保证短模型培训时间。在运行时,Legodnn最佳地结合了这些块的后代模型,以最大限度地在特定资源和延迟约束下最大限度地提高精度,同时通过DNN的智能块级缩放来降低切换开销。我们在Tensorflow Lite中实现Legodnn,并通过一组普遍的DNN模型,广泛地评估了最先进的技术(浮标缩放,知识蒸馏和模型压缩)。评估结果表明,乐高达在模型尺寸下提供了1,296倍至279,936倍,而在不增加训练时间的情况下,推断准确性的提高高达31.74%,降低缩放能耗减少了71.07%。
translated by 谷歌翻译
域适应(da)尝试将知识从标记的源域传输到从源的不同分发的未标记的目标域。为此,DA方法包括源分类目标,以提取源知识和域对齐目标以减少域移位,确保知识转移。通常,前DA方法采用一些重量的超参数来线性地结合培训目标来形成整体目标。然而,由于域移位,这些目标的梯度方向可能彼此冲突。在这种情况下,线性优化方案可能会降低整体目标值,以损坏其中一个培训目标,导致限制解决方案。在本文中,我们从基于梯度的角度来看了DA的优化方案。我们提出了帕累托域适应(Paretoda)方法来控制整体优化方向,旨在协同优化所有培训目标。具体地,为了达到目标域的理想解决方案,我们设计了模拟目标分类的替代损失。为了提高目标预测准确性以支持模拟,我们提出了一种目标预测精炼机制,其通过贝叶斯定理利用域标签。另一方面,由于对象的加权方案的先验知识通常无法指导优化来接近目标域上的最佳解决方案,因此我们提出了一种动态的偏好机制,以动态指导我们的合作优化通过替代损失的梯度保持未标记的目标数据集。关于图像分类和语义分割基准的广泛实验证明了Paretoda的有效性
translated by 谷歌翻译
高赌注域的机器学习模型制作的算法决策可能随着时间的推移而持久影响。不幸的是,静态环境中的标准公平标准的天真在时间域中的静态设置可能导致延迟和不利影响。要了解性能差异的动态,我们研究马尔可夫决策过程(MDP)的公平问题。具体而言,我们提出了返回奇偶校验,这是一个公平的概念,需要来自不同的人口统计组的MDP,这些组共享相同的状态和行动空间,以实现大致相同的预期折扣奖励。我们首先为返回差异提供分解定理,它将任何两个MDP的返回差异分解为组明智奖励函数,组政策的差异的差异,以及组政策所引起的国家探索分布之间的差异。通过我们的分解定理激励,我们提出了通过使用积分概率度量的状态探索分布对齐进行共享组策略来减轻返回差异的算法。我们进行实验以证实我们的结果,表明该算法可以成功地关闭视差差距,同时保持对两个现实世界推荐系统基准数据集的策略性能。
translated by 谷歌翻译
在少数射击域适应(FDA)中,针对目标域的分类器在源域(SD)(SD)中使用可访问的标记数据进行训练,而目标域(TD)中的标记数据很少。但是,数据通常包含当前时代的私人信息,例如分布在个人电话上的数据。因此,如果我们直接访问SD中的数据以训练目标域分类器(FDA方法要求),则将泄漏私人信息。在本文中,为了彻底防止SD中的隐私泄漏,我们考虑了一个非常具有挑战性的问题设置,必须使用很少的标签目标数据和训练有素的SD分类器对TD的分类器进行培训,并将其命名为几个示例的假设适应(FHA)。在FHA中,我们无法访问SD中的数据,因此,SD中的私人信息将得到很好的保护。为此,我们提出了一个目标定向的假设适应网络(TOHAN)来解决FHA问题,在该问题中,我们生成了高度兼容的未标记数据(即中间域),以帮助培训目标域分类器。 Tohan同时保持了两个深网,其中一个专注于学习中间域,而另一个则要照顾中间靶向分布的适应性和目标风险最小化。实验结果表明,Tohan的表现要优于竞争基线。
translated by 谷歌翻译