本文提出了将语音分离和增强(SSE)集成到ESPNET工具包中的最新进展。与以前的ESPNET-SE工作相比,已经添加了许多功能,包括最近的最新语音增强模型,并具有各自的培训和评估食谱。重要的是,已经设计了一个新界面,以灵活地将语音增强前端与其他任务相结合,包括自动语音识别(ASR),语音翻译(ST)和口语理解(SLU)。为了展示这种集成,我们在精心设计的合成数据集上进行了实验,用于嘈杂的多通道ST和SLU任务,可以用作未来研究的基准语料库。除了这些新任务外,我们还使用Chime-4和WSJ0-2MIX进行基准多链和单渠道SE方法。结果表明,即使在ASR以外的任务,尤其是在多频道方案中,SE前端与后端任务的集成也是一个有希望的研究方向。该代码可在https://github.com/espnet/espnet上在线获得。 HuggingFace上发布了这项工作的另一个贡献的多通道ST和SLU数据集。
translated by 谷歌翻译
搜索是数字平台和应用程序中的关键功能之一,如电子词典,搜索引擎和电子商务平台。虽然某些语言的搜索功能是微不足道的,但是,考虑到其复杂的写作系统,Khmer Word搜索是具有挑战性的。单词的多个字符和不同的拼写实现对Khmer Word搜索功能的约束施加了约束。此外,拼写错误很常见,因为强大的拼写检查器在输入设备平台上不可能可用。这些挑战阻碍了在搜索嵌入式应用中使用了高棉语言。此外,由于缺乏用于高棉语言的Wordnet的词汇数据库,因此无法在单词之间建立语义关系,从而实现语义搜索。在本文中,我们向上述与高棉Word搜索相关的挑战提出了一系列强大的解决方案。所提出的解决方案包括字符阶级标准化,图形和基于音素的拼写检查器和Khmer Word语义模型。语义模型基于嵌入模型的单词培训,该模型在30亿字的语料库上培训,用于捕获单词之间的语义相似之处。
translated by 谷歌翻译
文本分类是标记开放式文本的自然语言处理中的基本任务之一,对各种应用有用,如情绪分析。在本文中,我们讨论了Khmer文本的各种分类方法,从传统的TF-IDF算法到支持向量机分类器到基于现代字的基于词嵌入的神经网络分类器,包括线性层模型,经常性神经网络和卷积神经网络。 Khmer Word嵌入式模型培训在3000万Khmer-Word语料库上,以构建用于培训三种不同神经网络分类器的字矢量表示。我们为多类和多标签文本分类任务评估了对新闻文章数据集的不同方法的性能。结果表明,使用Word嵌入模型的神经网络分类器始终如一地始终使用TF-IDF来表达传统分类器。与卷积网络和线性层网络相比,经常性神经网络分类器提供稍好的结果。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
Learning feature interactions is the key to success for the large-scale CTR prediction and recommendation. In practice, handcrafted feature engineering usually requires exhaustive searching. In order to reduce the high cost of human efforts in feature engineering, researchers propose several deep neural networks (DNN)-based approaches to learn the feature interactions in an end-to-end fashion. However, existing methods either do not learn both vector-wise interactions and bit-wise interactions simultaneously, or fail to combine them in a controllable manner. In this paper, we propose a new model, xDeepInt, based on a novel network architecture called polynomial interaction network (PIN) which learns higher-order vector-wise interactions recursively. By integrating subspace-crossing mechanism, we enable xDeepInt to balance the mixture of vector-wise and bit-wise feature interactions at a bounded order. Based on the network architecture, we customize a combined optimization strategy to conduct feature selection and interaction selection. We implement the proposed model and evaluate the model performance on three real-world datasets. Our experiment results demonstrate the efficacy and effectiveness of xDeepInt over state-of-the-art models. We open-source the TensorFlow implementation of xDeepInt: https://github.com/yanyachen/xDeepInt.
translated by 谷歌翻译