Recently the deep learning has shown its advantage in representation learning and clustering for time series data. Despite the considerable progress, the existing deep time series clustering approaches mostly seek to train the deep neural network by some instance reconstruction based or cluster distribution based objective, which, however, lack the ability to exploit the sample-wise (or augmentation-wise) contrastive information or even the higher-level (e.g., cluster-level) contrastiveness for learning discriminative and clustering-friendly representations. In light of this, this paper presents a deep temporal contrastive clustering (DTCC) approach, which for the first time, to our knowledge, incorporates the contrastive learning paradigm into the deep time series clustering research. Specifically, with two parallel views generated from the original time series and their augmentations, we utilize two identical auto-encoders to learn the corresponding representations, and in the meantime perform the cluster distribution learning by incorporating a k-means objective. Further, two levels of contrastive learning are simultaneously enforced to capture the instance-level and cluster-level contrastive information, respectively. With the reconstruction loss of the auto-encoder, the cluster distribution loss, and the two levels of contrastive losses jointly optimized, the network architecture is trained in a self-supervised manner and the clustering result can thereby be obtained. Experiments on a variety of time series datasets demonstrate the superiority of our DTCC approach over the state-of-the-art.
translated by 谷歌翻译
Multi-view attributed graph clustering is an important approach to partition multi-view data based on the attribute feature and adjacent matrices from different views. Some attempts have been made in utilizing Graph Neural Network (GNN), which have achieved promising clustering performance. Despite this, few of them pay attention to the inherent specific information embedded in multiple views. Meanwhile, they are incapable of recovering the latent high-level representation from the low-level ones, greatly limiting the downstream clustering performance. To fill these gaps, a novel Dual Information enhanced multi-view Attributed Graph Clustering (DIAGC) method is proposed in this paper. Specifically, the proposed method introduces the Specific Information Reconstruction (SIR) module to disentangle the explorations of the consensus and specific information from multiple views, which enables GCN to capture the more essential low-level representations. Besides, the Mutual Information Maximization (MIM) module maximizes the agreement between the latent high-level representation and low-level ones, and enables the high-level representation to satisfy the desired clustering structure with the help of the Self-supervised Clustering (SC) module. Extensive experiments on several real-world benchmarks demonstrate the effectiveness of the proposed DIAGC method compared with the state-of-the-art baselines.
translated by 谷歌翻译
尽管以前基于图的多视图聚类算法已经取得了重大进展,但其中大多数仍面临三个限制。首先,他们经常遭受高计算复杂性的困扰,这限制了他们在大规模场景中的应用。其次,他们通常在单视图级别或视图传感级别上执行图形学习,但经常忽略单视图和共识图的联合学习的可能性。第三,其中许多人依靠$ k $ - 表示光谱嵌入的离散化,这些嵌入缺乏直接使用离散群集结构直接学习图形的能力。鉴于此,本文通过统一和离散的两部分图(UDBGL)提出了一种有效的多视图聚类方法。具体而言,基于锚的子空间学习被合并为从多个视图中学习特定的二分化图,并利用双方图融合来学习具有自适应重量学习的视图 - 谐镜双分歧图。此外,施加Laplacian等级约束以确保融合的两分图具有离散的群集结构(具有特定数量的连接组件)。通过同时制定特定视图的两分图学习,视图 - 共表的两分图学习以及离散的群集结构学习到统一的目标函数中,然后设计有效的最小化算法来解决此优化问题,并直接实现离散的聚类解决方案解决方案解决方案解决方案解决方案。不需要其他分区,这特别是数据大小的线性时间复杂性。各种多视图数据集的实验证明了我们的UDBGL方法的鲁棒性和效率。
translated by 谷歌翻译
多视图聚类已进行了广泛的研究,以利用多源信息来提高聚类性能。通常,大多数现有作品通常通过某些相似性/距离指标(例如欧几里得距离)或学习的表示形式来计算N * n亲和力图,并探索跨视图的成对相关性。但是不幸的是,通常需要二次甚至立方复杂性,这使得在聚集largescale数据集方面遇到了困难。最近,通过选择具有K-均值的视图锚表演或通过对原始观测值进行直接矩阵分解来捕获多个视图中的数据分布。尽管取得了巨大的成功,但很少有人考虑了视图不足问题,因此隐含地认为,每个单独的观点都足以恢复群集结构。此外,无法同时发现潜在积分空间以及来自多个视图的共享群集结构。鉴于这一点,我们为快速多视图聚类(AIMC)提出了一个具有几乎线性复杂性的快速多视图聚类(AIMC)。具体而言,视图生成模型旨在重建来自潜在积分空间的视图观测值,并具有不同的适应性贡献。同时,具有正交性约束和群集分区的质心表示无缝构造以近似潜在的积分空间。开发了一种替代最小化算法来解决优化问题,事实证明,该问题具有线性时间复杂性W.R.T.样本量。与最新方法相比,在几个Realworld数据集上进行的广泛实验证实了所提出的AIMC方法的优越性。
translated by 谷歌翻译
深度聚类最近引起了极大的关注。尽管取得了显着的进展,但以前的大多数深度聚类作品仍有两个局限性。首先,其中许多集中在某些基于分布的聚类损失上,缺乏通过对比度学习来利用样本(或增强)关系的能力。其次,他们经常忽略了间接样本结构信息,从而忽略了多尺度邻里结构学习的丰富可能性。鉴于这一点,本文提出了一种新的深聚类方法,称为图像聚类,其中包括对比度学习和多尺度图卷积网络(IcicleGCN),该网络(ICICELGCN)也弥合了卷积神经网络(CNN)和图形卷积网络(GCN)之间的差距。作为对比度学习与图像聚类任务的多尺度邻域结构学习之间的差距。所提出的IcicleGCN框架由四个主要模块组成,即基于CNN的主链,实例相似性模块(ISM),关节群集结构学习和实例重建模块(JC-SLIM)和多尺度GCN模块(M -GCN)。具体而言,在每个图像上执行了两个随机增强,使用两个重量共享视图的骨干网络用于学习增强样品的表示形式,然后将其馈送到ISM和JC-SLIM以进行实例级别和集群级别的对比度分别学习。此外,为了实施多尺度的邻域结构学习,通过(i)通过(i)层次融合的层相互作用和(ii)共同自适应学习确保他们的最后一层,同时对两个GCN和自动编码器进行了同时培训。层输出分布保持一致。多个图像数据集上的实验证明了IcicleGCN优于最先进的群集性能。
translated by 谷歌翻译
Vision Transformer(VIT)表明了其比卷积神经网络(CNN)的优势,其能够捕获全球远程依赖性以进行视觉表示学习。除了VIT,对比度学习是最近的另一个流行研究主题。尽管以前的对比学习作品主要基于CNN,但一些最新的研究试图共同对VIT进行建模和对比度学习,以增强自我监督的学习。尽管取得了很大的进步,但这些VIT和对比学习的组合主要集中在实例级对比度上,这些对比度通常忽略了全球聚类结构的对比度,并且缺乏直接学习聚类结果(例如图像)的能力。鉴于这一点,本文提出了一种端到端的深层图像聚类方法,称为对比群(VTCC)的视觉变压器(VTCC),据我们所知,该方法首次统一了变压器和对比度学习的对比度学习。图像聚类任务。具体而言,在微型批次中,在每个图像上执行了两个随机增强,我们利用具有两个重量分担视图的VIT编码器作为学习增强样品的表示形式。为了纠正VIT的潜在不稳定,我们结合了一个卷积茎,该卷积茎使用多个堆叠的小卷积而不是斑块投影层中的大卷积,将每个增强样品分为一系列斑块。通过通过主干学到的表示形式,实例投影仪和群集投影仪将进一步用于实例级对比度学习和全球聚类结构学习。在八个图像数据集上进行的广泛实验证明了VTCC的稳定性(在训练中)和优越性(在聚类性能中)比最先进的。
translated by 谷歌翻译
无法保证专家注释的培训数据的质量,甚至对于由分发样本组成的非IID数据(即,分布式和分布式样本都具有不同的分布),更是如此。 。专家可能会错误地注释与分布样本相同的分发样品,从而产生不可信的地面真相标签。学习这种非IID数据混合与不信任标签的分布样品混合在一起,既浅层和深度学习都有显着挑战,没有报告相关工作。可以识别样本的值得信赖的互补标签,指示其不属于哪些类,因为除分布外样品和分布外样品都不属于类别外,除了与地面真实标签相对应的类别。有了这个见解,我们提出了一种新颖的\ textit {灰色学习}方法,可以从非IID数据中学习具有分布式和分离外样品的非IID数据。由于训练样本的不确定分布,我们拒绝了低信心输入的互补标签,同时将高信心输入映射到培训中的地面真相标签。在统计学习理论的基础上,我们得出了概括误差,该误差表明灰色学习在非IID数据上实现了紧密的束缚。广泛的实验表明,我们的方法对可靠统计的替代方法提供了重大改进。
translated by 谷歌翻译
由于其通过深层神经网络的共同表示学习和聚类的能力,近年来,深层聚类引起了人们的关注。在其最新发展中,对比度学习已成为一种有效的技术,可实质性地提高深度聚类的性能。但是,现有的基于学习的基于对比的深层聚类算法主要集中于一些精心设计的增强(通常具有有限的转换以保留结构),被称为薄弱的增强,但不能超越弱化的增强,以探索更多的机会(随着更具侵略性的转变甚至严重的扭曲)。在本文中,我们提出了一种被称为强烈增强的对比聚类(SACC)的端到端深群集方法,该方法将传统的两夸大视图范式扩展到多种视图,并共同利用强大而弱的增强,以增强深层聚类。特别是,我们利用具有三重共享权重的骨干网络,在该网络中,强烈的增强视图和两个弱化的视图均融合在一起。基于主链产生的表示,弱进行弱化的视图对和强力视图对同时被利用用于实例级的对比度学习(通过实例投影仪)和群集级的对比度学习(通过群集投影仪),与主链一起可以以纯监督的方式共同优化。五个具有挑战性的图像数据集的实验结果表明,我们的SACC方法优于最先进的方法。该代码可在https://github.com/dengxiaozhi/sacc上找到。
translated by 谷歌翻译
最近,深度神经网络(DNN)已被广泛引入协作过滤(CF),以产生更准确的建议结果,因为它们可以捕获项目和用户之间复杂的非线性关系的能力。计算复杂性,即消耗很长的培训时间并存储大量可训练的参数。为了解决这些问题,我们提出了一种新的广泛推荐系统,称为“广泛协作过滤”(BRODCF),这是一种有效的非线性协作过滤方法。广泛的学习系统(BLS)代替DNN,用作映射功能,以学习用户和项目之间复杂的非线性关系,这些功能可以避免上述问题,同时达到非常令人满意的建议性能。但是,直接将原始评级数据馈送到BLS不可行。为此,我们提出了一个用户项目评分协作矢量预处理程序,以生成低维用户信息输入数据,该数据能够利用最相似的用户/项目的质量判断。在七个基准数据集上进行的广泛实验证实了所提出的广播算法的有效性
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译