软件工程(SE)中的情感分析表明了承诺分析和支持各种发展活动。我们报告了经验研究的结果,以确定我们通过组合独立的SE特定情绪探测器的极性标签来确定开发集合发动机的可行性。我们的研究有两个阶段。在第一阶段,我们通过Lin等人从最近发表的两篇论文中选择了五个特定的情绪检测工具。 [31,32],谁首先报告了独立的情绪探测器的负面结果,然后提出了改进的SE特异性情绪检测器,POME [31]。我们向第17,581个单位(句子/文件)报告来自六个目前可用情绪基准的17,581个单位(句子/文件)。我们发现现有工具可以在85-95%的情况下互补,即,一个是错误的,但另一个是对的。然而,这些工具的大多数基于投票的集合未能提高情绪检测的准确性。我们通过将极性标签和单词袋作为特征组合来开发Sentisead,一个受监督的工具。 Sentisead将各个工具的性能(F1分数)提高了4%(Over Senti4SD [5]) - 100%(通过Pome [31])。在第二阶段,我们使用预先培训的变压器模型(PTM)进行比较和改进Sentisead基础架构。我们发现,带Roberta的Sentisead基础架构作为来自Lin等人的五个独立规则和浅学习的SE特定工具的集合。 [31,32]在六个数据集中提供0.805的最佳F1分数,而独立罗伯塔显示F1分数为0.801。
translated by 谷歌翻译
该调查侧重于地球系统科学中的当前问题,其中可以应用机器学习算法。它概述了以前的工作,在地球科学部,印度政府的持续工作,以及ML算法的未来应用到一些重要的地球科学问题。我们提供了与本次调查的比较的比较,这是与机器学习相关的多维地区的思想地图,以及地球系统科学(ESS)中机器学习的Gartner的炒作周期。我们主要关注地球科学的关键组成部分,包括大气,海洋,地震学和生物圈,以及覆盖AI / ML应用程序统计侦查和预测问题。
translated by 谷歌翻译
解释在人类学习中发挥着相当大的作用,特别是在仍然在形成抽象的主要挑战,以及了解世界的关系和因果结构的地区。在这里,我们探索强化学习代理人是否同样可以从解释中受益。我们概述了一系列关系任务,涉及选择一个在一个集合中奇数一个的对象(即,沿许多可能的特征尺寸之一的唯一)。奇数一张任务要求代理在一组对象中的多维关系上推理。我们展示了代理商不会仅从奖励中学习这些任务,但是当它们也培训以生成语言解释对象属性或选择正确或不正确时,实现> 90%的性能。在进一步的实验中,我们展示了预测的解释如何使代理能够从模糊,因果困难的训练中适当地推广,甚至可以学习执行实验干预以识别因果结构。我们表明解释有助于克服代理人来解决简单特征的趋势,并探讨解释的哪些方面使它们成为最有益的。我们的结果表明,从解释中学习是一种强大的原则,可以为培训更强大和一般机器学习系统提供有希望的道路。
translated by 谷歌翻译
数据增强是自然语言处理(NLP)模型的鲁棒性评估的重要组成部分,以及增强他们培训的数据的多样性。在本文中,我们呈现NL-Cogmenter,这是一种新的参与式Python的自然语言增强框架,它支持创建两个转换(对数据的修改)和过滤器(根据特定功能的数据拆分)。我们描述了框架和初始的117个变换和23个过滤器,用于各种自然语言任务。我们通过使用其几个转换来分析流行自然语言模型的鲁棒性来证明NL-Upmenter的功效。基础架构,Datacards和稳健性分析结果在NL-Augmenter存储库上公开可用(\ url {https://github.com/gem-benchmark/nl-augmenter})。
translated by 谷歌翻译
求解电磁逆散射问题(ISP)由于内在的非线性,呈不良和昂贵的计算成本,挑战。最近,深神经网络(DNN)技术已经成功地应用于ISP上,并在传统方法上示出了优异成像的电位。在本文中,我们分析了DNN溶剂和传统迭代算法之间的类比,并讨论了在训练过程中不能有效地纳入重要的物理现象。我们展示了在DNN的学习过程中包括近端前瞻的重要性。为此,我们提出了新的损耗功能设计,其包括基于多散射的近场数量(例如散射场或感兴趣领域内的诱导电流)。使用各种数值实验研究了物理引导功能的影响。总结了调查的ISP求解器的利弊,综述了不同损失功能。
translated by 谷歌翻译
脑转移性疾病的治疗决策依赖于主要器官位点的知识,目前用活组织检查和组织学进行。在这里,我们开发了一种具有全脑MRI数据的准确非侵入性数字组织学的新型深度学习方法。我们的IRB批准的单网回顾性研究由患者(n = 1,399)组成,提及MRI治疗规划和伽马刀放射牢房超过19年。对比增强的T1加权和T2加权流体减毒的反转恢复脑MRI考试(n = 1,582)被预处理,并输入肿瘤细分,模态转移和主要部位分类的建议深度学习工作流程为五个课程之一(肺,乳腺,黑色素瘤,肾等)。十倍的交叉验证产生的总体AUC为0.947(95%CI:0.938,0.955),肺类AUC,0.899(95%CI:0.884,0.915),乳房类AUC为0.990(95%CI:0.983,0.997) ,黑色素瘤ACAC为0.882(95%CI:0.858,0.906),肾类AUC为0.870(95%CI:0.823,0.918),以及0.885的其他AUC(95%CI:0.843,0.949)。这些数据确定全脑成像特征是判别的,以便准确诊断恶性肿瘤的主要器官位点。我们的端到端深度射出方法具有巨大的分类来自全脑MRI图像的转移性肿瘤类型。进一步的细化可以提供一种无价的临床工具,以加快对精密治疗和改进的结果的原发性癌症现场鉴定。
translated by 谷歌翻译
Designing experiments often requires balancing between learning about the true treatment effects and earning from allocating more samples to the superior treatment. While optimal algorithms for the Multi-Armed Bandit Problem (MABP) provide allocation policies that optimally balance learning and earning, they tend to be computationally expensive. The Gittins Index (GI) is a solution to the MABP that can simultaneously attain optimality and computationally efficiency goals, and it has been recently used in experiments with Bernoulli and Gaussian rewards. For the first time, we present a modification of the GI rule that can be used in experiments with exponentially-distributed rewards. We report its performance in simulated 2- armed and 3-armed experiments. Compared to traditional non-adaptive designs, our novel GI modified design shows operating characteristics comparable in learning (e.g. statistical power) but substantially better in earning (e.g. direct benefits). This illustrates the potential that designs using a GI approach to allocate participants have to improve participant benefits, increase efficiencies, and reduce experimental costs in adaptive multi-armed experiments with exponential rewards.
translated by 谷歌翻译
Modelling and forecasting real-life human behaviour using online social media is an active endeavour of interest in politics, government, academia, and industry. Since its creation in 2006, Twitter has been proposed as a potential laboratory that could be used to gauge and predict social behaviour. During the last decade, the user base of Twitter has been growing and becoming more representative of the general population. Here we analyse this user base in the context of the 2021 Mexican Legislative Election. To do so, we use a dataset of 15 million election-related tweets in the six months preceding election day. We explore different election models that assign political preference to either the ruling parties or the opposition. We find that models using data with geographical attributes determine the results of the election with better precision and accuracy than conventional polling methods. These results demonstrate that analysis of public online data can outperform conventional polling methods, and that political analysis and general forecasting would likely benefit from incorporating such data in the immediate future. Moreover, the same Twitter dataset with geographical attributes is positively correlated with results from official census data on population and internet usage in Mexico. These findings suggest that we have reached a period in time when online activity, appropriately curated, can provide an accurate representation of offline behaviour.
translated by 谷歌翻译
Existing federated classification algorithms typically assume the local annotations at every client cover the same set of classes. In this paper, we aim to lift such an assumption and focus on a more general yet practical non-IID setting where every client can work on non-identical and even disjoint sets of classes (i.e., client-exclusive classes), and the clients have a common goal which is to build a global classification model to identify the union of these classes. Such heterogeneity in client class sets poses a new challenge: how to ensure different clients are operating in the same latent space so as to avoid the drift after aggregation? We observe that the classes can be described in natural languages (i.e., class names) and these names are typically safe to share with all parties. Thus, we formulate the classification problem as a matching process between data representations and class representations and break the classification model into a data encoder and a label encoder. We leverage the natural-language class names as the common ground to anchor the class representations in the label encoder. In each iteration, the label encoder updates the class representations and regulates the data representations through matching. We further use the updated class representations at each round to annotate data samples for locally-unaware classes according to similarity and distill knowledge to local models. Extensive experiments on four real-world datasets show that the proposed method can outperform various classical and state-of-the-art federated learning methods designed for learning with non-IID data.
translated by 谷歌翻译
Unsupervised learning-based anomaly detection in latent space has gained importance since discriminating anomalies from normal data becomes difficult in high-dimensional space. Both density estimation and distance-based methods to detect anomalies in latent space have been explored in the past. These methods prove that retaining valuable properties of input data in latent space helps in the better reconstruction of test data. Moreover, real-world sensor data is skewed and non-Gaussian in nature, making mean-based estimators unreliable for skewed data. Again, anomaly detection methods based on reconstruction error rely on Euclidean distance, which does not consider useful correlation information in the feature space and also fails to accurately reconstruct the data when it deviates from the training distribution. In this work, we address the limitations of reconstruction error-based autoencoders and propose a kernelized autoencoder that leverages a robust form of Mahalanobis distance (MD) to measure latent dimension correlation to effectively detect both near and far anomalies. This hybrid loss is aided by the principle of maximizing the mutual information gain between the latent dimension and the high-dimensional prior data space by maximizing the entropy of the latent space while preserving useful correlation information of the original data in the low-dimensional latent space. The multi-objective function has two goals -- it measures correlation information in the latent feature space in the form of robust MD distance and simultaneously tries to preserve useful correlation information from the original data space in the latent space by maximizing mutual information between the prior and latent space.
translated by 谷歌翻译