动作识别是人工智能的激动人心的研究途径,因为它可能是新兴工业领域(例如机器人视觉和汽车)的游戏规则。但是,由于巨大的计算成本和效率低下的学习,当前的深度学习面临着此类应用的主要挑战。因此,我们开发了一种新型的基于脑启发的尖峰神经网络(SNN)的系统,标题为用于在线动作学习的尖峰门控流(SGF)。开发的系统由多个以分层方式组装的SGF单元组成。单个SGF单元涉及三层:特征提取层,事件驱动的层和基于直方图的训练层。为了展示开发的系统功能,我们采用标准的动态视觉传感器(DVS)手势分类作为基准。结果表明,我们可以达到87.5%的精度,这与深度学习(DL)相当,但在较小的培训/推理数据编号比率为1.5:1。在学习过程中,只需要一个单个培训时代。同时,据我们所知,这是基于非回复算法的SNN中最高准确性。最后,我们结论了开发网络的几乎没有的学习范式:1)基于层次结构的网络设计涉及人类的先验知识; 2)用于基于内容的全局动态特征检测的SNN。
translated by 谷歌翻译
Rigorous guarantees about the performance of predictive algorithms are necessary in order to ensure their responsible use. Previous work has largely focused on bounding the expected loss of a predictor, but this is not sufficient in many risk-sensitive applications where the distribution of errors is important. In this work, we propose a flexible framework to produce a family of bounds on quantiles of the loss distribution incurred by a predictor. Our method takes advantage of the order statistics of the observed loss values rather than relying on the sample mean alone. We show that a quantile is an informative way of quantifying predictive performance, and that our framework applies to a variety of quantile-based metrics, each targeting important subsets of the data distribution. We analyze the theoretical properties of our proposed method and demonstrate its ability to rigorously control loss quantiles on several real-world datasets.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Transformer-based models have gained large popularity and demonstrated promising results in long-term time-series forecasting in recent years. In addition to learning attention in time domain, recent works also explore learning attention in frequency domains (e.g., Fourier domain, wavelet domain), given that seasonal patterns can be better captured in these domains. In this work, we seek to understand the relationships between attention models in different time and frequency domains. Theoretically, we show that attention models in different domains are equivalent under linear conditions (i.e., linear kernel to attention scores). Empirically, we analyze how attention models of different domains show different behaviors through various synthetic experiments with seasonality, trend and noise, with emphasis on the role of softmax operation therein. Both these theoretical and empirical analyses motivate us to propose a new method: TDformer (Trend Decomposition Transformer), that first applies seasonal-trend decomposition, and then additively combines an MLP which predicts the trend component with Fourier attention which predicts the seasonal component to obtain the final prediction. Extensive experiments on benchmark time-series forecasting datasets demonstrate that TDformer achieves state-of-the-art performance against existing attention-based models.
translated by 谷歌翻译
We present a new algorithm to learn a deep neural network model robust against adversarial attacks. Previous algorithms demonstrate an adversarially trained Bayesian Neural Network (BNN) provides improved robustness. We recognize the adversarial learning approach for approximating the multi-modal posterior distribution of a Bayesian model can lead to mode collapse; consequently, the model's achievements in robustness and performance are sub-optimal. Instead, we first propose preventing mode collapse to better approximate the multi-modal posterior distribution. Second, based on the intuition that a robust model should ignore perturbations and only consider the informative content of the input, we conceptualize and formulate an information gain objective to measure and force the information learned from both benign and adversarial training instances to be similar. Importantly. we prove and demonstrate that minimizing the information gain objective allows the adversarial risk to approach the conventional empirical risk. We believe our efforts provide a step toward a basis for a principled method of adversarially training BNNs. Our model demonstrate significantly improved robustness--up to 20%--compared with adversarial training and Adv-BNN under PGD attacks with 0.035 distortion on both CIFAR-10 and STL-10 datasets.
translated by 谷歌翻译
Artificial intelligence methods including deep neural networks (DNN) can provide rapid molecular classification of tumors from routine histology with accuracy that matches or exceeds human pathologists. Discerning how neural networks make their predictions remains a significant challenge, but explainability tools help provide insights into what models have learned when corresponding histologic features are poorly defined. Here, we present a method for improving explainability of DNN models using synthetic histology generated by a conditional generative adversarial network (cGAN). We show that cGANs generate high-quality synthetic histology images that can be leveraged for explaining DNN models trained to classify molecularly-subtyped tumors, exposing histologic features associated with molecular state. Fine-tuning synthetic histology through class and layer blending illustrates nuanced morphologic differences between tumor subtypes. Finally, we demonstrate the use of synthetic histology for augmenting pathologist-in-training education, showing that these intuitive visualizations can reinforce and improve understanding of histologic manifestations of tumor biology.
translated by 谷歌翻译
Self-supervised learning via masked prediction pre-training (MPPT) has shown impressive performance on a range of speech-processing tasks. This paper proposes a method to bias self-supervised learning towards a specific task. The core idea is to slightly finetune the model that is used to obtain the target sequence. This leads to better performance and a substantial increase in training speed. Furthermore, this paper proposes a variant of MPPT that allows low-footprint streaming models to be trained effectively by computing the MPPT loss on masked and unmasked frames. These approaches are evaluated for automatic speech recognition on the Librispeech corpus, where 100 hours of data served as the labelled data and 860 hours as the unlabelled data. The biased training outperforms the unbiased training by 15.5% after 250k updates and 23.8% after 100k updates on test-other. For the streaming models, the pre-training approach yields a reduction in word error rate of 44.1%.
translated by 谷歌翻译
全球金融危机和共同衰退已重新讨论有关宏观经济数据中趋势周期发现的讨论,而Boosting最近将流行的HP过滤器升级为适合数据丰富和快速计算环境的现代机器学习设备。本文阐明了其在趋势周期测定中的多功能性,以简单的方式解释了HP滤波器平滑性和通过增强一般趋势检测而提供的一致性。应用于FRED数据库中的时间序列的宇宙,在及时捕获随后的危机和恢复局的衰退中提高其他方法的表现。凭借其广泛的适用性,增强的HP过滤器是宏观经济学工具包的有用的自动化机器学习。
translated by 谷歌翻译
随着卷积神经网络(CNN)在物体识别方面变得更加准确,它们的表示与灵长类动物的视觉系统越来越相似。这一发现激发了我们和其他研究人员询问该含义是否也以另一种方式运行:如果CNN表示更像大脑,网络会变得更加准确吗?以前解决这个问题的尝试显示出非常适中的准确性,部分原因是正则化方法的局限性。为了克服这些局限性,我们开发了一种新的CNN神经数据正常化程序,该数据正常化程序使用深层规范相关分析(DCCA)来优化CNN图像表示与猴子视觉皮层的相似之处。使用这种新的神经数据正常化程序,与先前的最新神经数据正则化器相比,我们看到分类准确性和少级精度的性能提高得多。这些网络对对抗性攻击也比未注册的攻击更强大。这些结果共同证实,神经数据正则化可以提高CNN的性能,并引入了一种获得更大性能提升的新方法。
translated by 谷歌翻译
前列腺活检和图像引导的治疗程序通常是在与磁共振图像(MRI)的超声指导下进行的。准确的图像融合依赖于超声图像上前列腺的准确分割。然而,超声图像中降低的信噪比和工件(例如,斑点和阴影)限制了自动前列腺分割技术的性能,并将这些方法推广到新的图像域是本质上很难的。在这项研究中,我们通过引入一种新型的2.5D深神经网络来解决这些挑战,用于超声图像上的前列腺分割。我们的方法通过组合有监督的域适应技术和知识蒸馏损失,解决了转移学习和填充方法的局限性(即,在更新模型权重时,在更新模型权重时的性能下降)。知识蒸馏损失允许保留先前学习的知识,并在新数据集上的模型填充后降低性能下降。此外,我们的方法依赖于注意模块,该模块认为模型特征定位信息以提高分割精度。我们对一个机构的764名受试者进行了培训,并仅使用后续机构中的十个受试者对我们的模型进行了审核。我们分析了方法在三个大型数据集上的性能,其中包括来自三个不同机构的2067名受试者。我们的方法达到了平均骰子相似性系数(骰子)为$ 94.0 \ pm0.03 $,而Hausdorff距离(HD95)为2.28 $ mm $,在第一机构的独立受试者中。此外,我们的模型在其他两个机构的研究中都很好地概括了(骰子:$ 91.0 \ pm0.03 $; hd95:3.7 $ mm $ and Dice:$ 82.0 \ pm0.03 $; hd95 $; hd95:7.1 $ mm $)。
translated by 谷歌翻译