学习证明(POL)建议模型所有者使用机器学习培训检查站,以建立已经花费了必要的培训计算的证明。 POL FIREGO加密方法和贸易严格的安全性的作者通过适用于随机梯度下降和适应性变体,可扩展到深度学习。缺乏正式分析使攻击者可能能够为他们没有训练的模型提供证据。我们对为什么不能正式(DIS)正式分析POL协议可抵抗欺骗对手。为此,我们在POL中解开了证明验证的两个角色:(a)有效确定证明是否是有效的梯度下降轨迹,以及(b)确定优先级,使在培训完成后制作证明(即。 ,欺骗)。我们表明,有效的验证会导致接受合法证明和拒绝无效的证据之间的权衡,因为深度学习必然涉及噪音。没有针对这种噪声如何影响训练的精确分析模型,我们无法正式保证POL验证算法是否强大。然后,我们证明,建立优先级也可以鲁棒化地减少到学习理论中的一个开放问题:欺骗Pol Pol hoc hoc训练类似于在非凸X学习中找到具有相同终点的不同轨迹。但是,我们不严格地知道对最终模型权重的先验知识是否有助于发现此类轨迹。我们得出的结论是,在解决上述开放问题之前,可能需要更严重地依靠密码学来制定新的POL协议,并提供正式的鲁棒性保证。特别是,这将有助于建立优先级。作为我们分析的见解的副产品,我们还展示了对POL的两次新攻击。
translated by 谷歌翻译
选择性分类是拒绝模型将通过输入空间覆盖范围和模型准确性之间的权衡进行不正确预测的输入的任务。选择性分类的当前方法对模型架构或损耗函数施加约束;这在实践中抑制了它们的用法。与先前的工作相反,我们表明,只能通过研究模型的(离散)训练动力来实现最新的选择性分类性能。我们提出了一个通用框架,该框架对于给定的测试输入,监视指标,该指标与训练过程中获得的中间模型相对于最终预测标签的分歧;然后,我们拒绝在培训后期阶段表现出太多分歧的数据点。特别是,我们实例化了一种方法,该方法可以跟踪何时预测训练期间的标签停止与最终预测标签的意见。我们的实验评估表明,我们的方法在典型的选择性分类基准上实现了最先进的准确性/覆盖范围。
translated by 谷歌翻译
差异隐私(DP)是关于培训算法保证隐私保证的事实上的标准。尽管DP的经验观察降低了模型对现有成员推理(MI)攻击的脆弱性,但理论上的基础是文献中很大程度上缺少这种情况。在实践中,这意味着需要对模型进行DP培训,可以大大降低其准确性。在本文中,当培训算法提供$ \ epsilon $ -dp或$(\ epsilon,\ delta)$ -DP时,我们就对任何MI对手的积极准确性(即攻击精度)提供了更严格的限制。我们的界限为新型隐私放大方案的设计提供了信息,在该方案中,有效的训练集是在培训开始之前从较大集合的较大集合进行的,以大大降低MI准确性的界限。结果,我们的计划使DP用户在训练其模型时可以使用宽松的DP保证来限制任何MI对手的成功;这样可以确保模型的准确性受到隐私保证的影响较小。最后,我们讨论了我们的MI束缚在机器上学习领域的含义。
translated by 谷歌翻译
饮食管理是管理糖尿病等慢性病的关键。自动化食品推荐系统可以通过提供符合用户的营养目标和食物偏好的膳食建议提供帮助。当前推荐系统缺乏缺乏准确性,部分是由于缺乏对食物偏好的知识,即食品用户可以常常吃。在这项工作中,我们提出了一种从食物日志中学习食物偏好的方法,是关于用户饮食习惯的全面但嘈杂的信息来源。我们还介绍了伴随的指标。该方法生成并比较Word Embeddings以识别每个食物条目的父食品类别,然后计算最受欢迎的。我们所提出的方法识别用户十个最常见的食物的82%。我们的方法是公开推出的(https://github.com/aametwally/learningfoodpreferences)
translated by 谷歌翻译