与数字计算相比,模拟计算具有吸引力,因为它可以达到更高的计算密度和更高的能源效率。但是,与数字电路不同,由于晶体管偏置偏差,温度变化和有限的动态范围的差异,传统的模拟计算电路不能轻易地在不同的过程节点上映射。在这项工作中,我们概括了先前报道的基于边缘传播的模拟计算框架,用于设计新颖的\ textit {基于形状的模拟计算}(S-AC)电路,这些电路可以轻松地在不同的过程节点上交叉映射。与数字设计类似的S-AC设计也可以缩放以获得精确,速度和功率。作为概念验证,我们展示了实现机器学习(ML)体系结构中通常使用的数学功能的S-AC电路的几个示例。使用电路模拟,我们证明了电路输入/输出特性从平面CMOS 180NM工艺映射到FinFET 7NM工艺时保持健壮。同样,使用基准数据集,我们证明了基于S-AC的神经网络的分类精度在两个过程中映射到温度变化时仍然坚固。
translated by 谷歌翻译
偏差可估算的模拟计算对于实施机器学习(ML)处理器具有不同的功能性能规格具有吸引力。例如,用于服务器工作负载的ML实现专注于计算吞吐量和更快的训练,而Edge设备的ML实现则集中在节能推理上。在本文中,我们证明了使用边缘传播(MP)原理的概括(MP)原理称为基于形状的模拟计算(S-AC)的偏置模拟计算电路的实现。所得的S-AC核心集成了几个接近内存的计算元素,其中包括:(a)非线性激活函数; (b)内部产品计算电路; (c)混合信号压缩内存。使用在180nm CMOS工艺中制造的原型的测量结果,我们证明了计算模块的性能仍然可与晶体管偏置和温度变化保持稳健。在本文中,我们还证明了简单的ML回归任务的偏差量表性。
translated by 谷歌翻译
Participants in political discourse employ rhetorical strategies -- such as hedging, attributions, or denials -- to display varying degrees of belief commitments to claims proposed by themselves or others. Traditionally, political scientists have studied these epistemic phenomena through labor-intensive manual content analysis. We propose to help automate such work through epistemic stance prediction, drawn from research in computational semantics, to distinguish at the clausal level what is asserted, denied, or only ambivalently suggested by the author or other mentioned entities (belief holders). We first develop a simple RoBERTa-based model for multi-source stance predictions that outperforms more complex state-of-the-art modeling. Then we demonstrate its novel application to political science by conducting a large-scale analysis of the Mass Market Manifestos corpus of U.S. political opinion books, where we characterize trends in cited belief holders -- respected allies and opposed bogeymen -- across U.S. political ideologies.
translated by 谷歌翻译
Spoken language understanding (SLU) tasks have been studied for many decades in the speech research community, but have not received as much attention as lower-level tasks like speech and speaker recognition. In particular, there are not nearly as many SLU task benchmarks, and many of the existing ones use data that is not freely available to all researchers. Recent work has begun to introduce such benchmark datasets for several tasks. In this work, we introduce several new annotated SLU benchmark tasks based on freely available speech data, which complement existing benchmarks and address gaps in the SLU evaluation landscape. We contribute four tasks: question answering and summarization involve inference over longer speech sequences; named entity localization addresses the speech-specific task of locating the targeted content in the signal; dialog act classification identifies the function of a given speech utterance. We follow the blueprint of the Spoken Language Understanding Evaluation (SLUE) benchmark suite. In order to facilitate the development of SLU models that leverage the success of pre-trained speech representations, we will be publishing for each task (i) annotations for a relatively small fine-tuning set, (ii) annotated development and test sets, and (iii) baseline models for easy reproducibility and comparisons. In this work, we present the details of data collection and annotation and the performance of the baseline models. We also perform sensitivity analysis of pipeline models' performance (speech recognizer + text model) to the speech recognition accuracy, using more than 20 state-of-the-art speech recognition models.
translated by 谷歌翻译
Part of Speech (POS) tagging is crucial to Natural Language Processing (NLP). It is a well-studied topic in several resource-rich languages. However, the development of computational linguistic resources is still in its infancy despite the existence of numerous languages that are historically and literary rich. Assamese, an Indian scheduled language, spoken by more than 25 million people, falls under this category. In this paper, we present a Deep Learning (DL)-based POS tagger for Assamese. The development process is divided into two stages. In the first phase, several pre-trained word embeddings are employed to train several tagging models. This allows us to evaluate the performance of the word embeddings in the POS tagging task. The top-performing model from the first phase is employed to annotate another set of new sentences. In the second phase, the model is trained further using the fresh dataset. Finally, we attain a tagging accuracy of 86.52% in F1 score. The model may serve as a baseline for further study on DL-based Assamese POS tagging.
translated by 谷歌翻译
6D object pose estimation has been a research topic in the field of computer vision and robotics. Many modern world applications like robot grasping, manipulation, autonomous navigation etc, require the correct pose of objects present in a scene to perform their specific task. It becomes even harder when the objects are placed in a cluttered scene and the level of occlusion is high. Prior works have tried to overcome this problem but could not achieve accuracy that can be considered reliable in real-world applications. In this paper, we present an architecture that, unlike prior work, is context-aware. It utilizes the context information available to us about the objects. Our proposed architecture treats the objects separately according to their types i.e; symmetric and non-symmetric. A deeper estimator and refiner network pair is used for non-symmetric objects as compared to symmetric due to their intrinsic differences. Our experiments show an enhancement in the accuracy of about 3.2% over the LineMOD dataset, which is considered a benchmark for pose estimation in the occluded and cluttered scenes, against the prior state-of-the-art DenseFusion. Our results also show that the inference time we got is sufficient for real-time usage.
translated by 谷歌翻译
Biomedical image segmentation is one of the fastest growing fields which has seen extensive automation through the use of Artificial Intelligence. This has enabled widespread adoption of accurate techniques to expedite the screening and diagnostic processes which would otherwise take several days to finalize. In this paper, we present an end-to-end pipeline to segment lungs from chest X-ray images, training the neural network model on the Japanese Society of Radiological Technology (JSRT) dataset, using UNet to enable faster processing of initial screening for various lung disorders. The pipeline developed can be readily used by medical centers with just the provision of X-Ray images as input. The model will perform the preprocessing, and provide a segmented image as the final output. It is expected that this will drastically reduce the manual effort involved and lead to greater accessibility in resource-constrained locations.
translated by 谷歌翻译
Mixup is a popular data augmentation technique based on creating new samples by linear interpolation between two given data samples, to improve both the generalization and robustness of the trained model. Knowledge distillation (KD), on the other hand, is widely used for model compression and transfer learning, which involves using a larger network's implicit knowledge to guide the learning of a smaller network. At first glance, these two techniques seem very different, however, we found that ``smoothness" is the connecting link between the two and is also a crucial attribute in understanding KD's interplay with mixup. Although many mixup variants and distillation methods have been proposed, much remains to be understood regarding the role of a mixup in knowledge distillation. In this paper, we present a detailed empirical study on various important dimensions of compatibility between mixup and knowledge distillation. We also scrutinize the behavior of the networks trained with a mixup in the light of knowledge distillation through extensive analysis, visualizations, and comprehensive experiments on image classification. Finally, based on our findings, we suggest improved strategies to guide the student network to enhance its effectiveness. Additionally, the findings of this study provide insightful suggestions to researchers and practitioners that commonly use techniques from KD. Our code is available at https://github.com/hchoi71/MIX-KD.
translated by 谷歌翻译
Many self-supervised speech models, varying in their pre-training objective, input modality, and pre-training data, have been proposed in the last few years. Despite impressive empirical successes on downstream tasks, we still have a limited understanding of the properties encoded by the models and the differences across models. In this work, we examine the intermediate representations for a variety of recent models. Specifically, we measure acoustic, phonetic, and word-level properties encoded in individual layers, using a lightweight analysis tool based on canonical correlation analysis (CCA). We find that these properties evolve across layers differently depending on the model, and the variations relate to the choice of pre-training objective. We further investigate the utility of our analyses for downstream tasks by comparing the property trends with performance on speech recognition and spoken language understanding tasks. We discover that CCA trends provide reliable guidance to choose layers of interest for downstream tasks and that single-layer performance often matches or improves upon using all layers, suggesting implications for more efficient use of pre-trained models.
translated by 谷歌翻译
这项工作使用水果和叶子的图像提出了一个基于学习的植物性诊断系统。已经使用了五个最先进的卷积神经网络(CNN)来实施该系统。迄今为止,模型的精度一直是此类应用程序的重点,并且尚未考虑模型的模型适用于最终用户设备。两种模型量化技术,例如float16和动态范围量化已应用于五个最新的CNN体系结构。研究表明,量化的GoogleNet模型达到了0.143 MB的尺寸,准确度为97%,这是考虑到大小标准的最佳候选模型。高效网络模型以99%的精度达到了4.2MB的大小,这是考虑性能标准的最佳模型。源代码可在https://github.com/compostieai/guava-disease-detection上获得。
translated by 谷歌翻译