Adversarial machine learning has been both a major concern and a hot topic recently, especially with the ubiquitous use of deep neural networks in the current landscape. Adversarial attacks and defenses are usually likened to a cat-and-mouse game in which defenders and attackers evolve over the time. On one hand, the goal is to develop strong and robust deep networks that are resistant to malicious actors. On the other hand, in order to achieve that, we need to devise even stronger adversarial attacks to challenge these defense models. Most of existing attacks employs a single $\ell_p$ distance (commonly, $p\in\{1,2,\infty\}$) to define the concept of closeness and performs steepest gradient ascent w.r.t. this $p$-norm to update all pixels in an adversarial example in the same way. These $\ell_p$ attacks each has its own pros and cons; and there is no single attack that can successfully break through defense models that are robust against multiple $\ell_p$ norms simultaneously. Motivated by these observations, we come up with a natural approach: combining various $\ell_p$ gradient projections on a pixel level to achieve a joint adversarial perturbation. Specifically, we learn how to perturb each pixel to maximize the attack performance, while maintaining the overall visual imperceptibility of adversarial examples. Finally, through various experiments with standardized benchmarks, we show that our method outperforms most current strong attacks across state-of-the-art defense mechanisms, while retaining its ability to remain clean visually.
translated by 谷歌翻译
Pareto Front Learning (PFL) was recently introduced as an effective approach to obtain a mapping function from a given trade-off vector to a solution on the Pareto front, which solves the multi-objective optimization (MOO) problem. Due to the inherent trade-off between conflicting objectives, PFL offers a flexible approach in many scenarios in which the decision makers can not specify the preference of one Pareto solution over another, and must switch between them depending on the situation. However, existing PFL methods ignore the relationship between the solutions during the optimization process, which hinders the quality of the obtained front. To overcome this issue, we propose a novel PFL framework namely \ourmodel, which employs a hypernetwork to generate multiple solutions from a set of diverse trade-off preferences and enhance the quality of the Pareto front by maximizing the Hypervolume indicator defined by these solutions. The experimental results on several MOO machine learning tasks show that the proposed framework significantly outperforms the baselines in producing the trade-off Pareto front.
translated by 谷歌翻译
成功的人工智能系统通常需要大量标记的数据来从文档图像中提取信息。在本文中,我们研究了改善人工智能系统在理解文档图像中的性能的问题,尤其是在培训数据受到限制的情况下。我们通过使用加强学习提出一种新颖的填充方法来解决问题。我们的方法将信息提取模型视为策略网络,并使用策略梯度培训来更新模型,以最大程度地提高补充传统跨凝结损失的综合奖励功能。我们使用标签和专家反馈在四个数据集上进行的实验表明,我们的填充机制始终提高最先进的信息提取器的性能,尤其是在小型培训数据制度中。
translated by 谷歌翻译
尽管在过去的几年中取得了重大进展,但歧义仍然是面部表情识别(FER)的关键挑战。它可能导致嘈杂和不一致的注释,这阻碍了现实世界中深度学习模型的性能。在本文中,我们提出了一种新的不确定性标签分布学习方法,以提高深层模型的鲁棒性,以防止不确定性和歧义。我们利用价值空间中的邻里信息来适应培训训练样本的情绪分布。我们还考虑提供的标签将其纳入标签分布时的不确定性。我们的方法可以轻松地集成到深层网络中,以获得更多的培训监督并提高识别准确性。在各种嘈杂和模棱两可的环境下,在几个数据集上进行了密集的实验表明,我们的方法取得了竞争成果,并且超出了最新的最新方法。我们的代码和模型可在https://github.com/minhnhatvt/label-distribution-learning-fer-tf上找到。
translated by 谷歌翻译
无线传感器网络由随机分布的传感器节点组成,用于监视目标或感兴趣的区域。由于每个传感器的电池容量有限,因此维持连续监视的网络是一个挑战。无线电源传输技术正在作为可靠的解决方案,用于通过部署移动充电器(MC)为传感器充电传感器。但是,由于网络中出现不确定性,为MC设计最佳的充电路径是具有挑战性的。由于网络拓扑的不可预测的变化,例如节点故障,传感器的能耗率可能会显着波动。这些变化也导致每个传感器的重要性变化,在现有作品中通常被认为是相同的。我们在本文中提出了一种使用深度强化学习(DRL)方法提出新颖的自适应充电方案,以解决这些挑战。具体来说,我们赋予MC采用充电策略,该策略确定了下一个在网络当前状态上充电条件的传感器。然后,我们使用深层神经网络来参数这项收费策略,该策略将通过强化学习技术进行培训。我们的模型可以适应网络拓扑的自发变化。经验结果表明,所提出的算法的表现优于现有的按需算法的大幅度边缘。
translated by 谷歌翻译
COVID-19大流行已经暴露了全球医疗服务的脆弱性,增加了开发新颖的工具来提供快速且具有成本效益的筛查和诊断的需求。临床报告表明,Covid-19感染可能导致心脏损伤,心电图(ECG)可以作为Covid-19的诊断生物标志物。这项研究旨在利用ECG信号自动检测COVID-19。我们提出了一种从ECG纸记录中提取ECG信号的新方法,然后将其送入一维卷积神经网络(1D-CNN)中,以学习和诊断疾病。为了评估数字信号的质量,标记了基于纸张的ECG图像中的R峰。之后,将从每个图像计算的RR间隔与相应数字化信号的RR间隔进行比较。 COVID-19 ECG图像数据集上的实验表明,提出的数字化方法能够正确捕获原始信号,平均绝对误差为28.11 ms。我们提出的1D-CNN模型在数字化的心电图信号上进行了训练,允许准确识别患有COVID-19和其他受试者的个体,分类精度为98.42%,95.63%和98.50%,用于分类COVID-19 vs.正常,与正常人分类, COVID-19与异常心跳和Covid-19和其他类别分别与其他阶级。此外,提出的方法还为多分类任务实现了高级的性能。我们的发现表明,经过数字化的心电图信号训练的深度学习系统可以作为诊断Covid-19的潜在工具。
translated by 谷歌翻译
鉴于在各种条件和背景下捕获的图像的识别药物已经变得越来越重要。已经致力于利用基于深度学习的方法来解决文献中的药丸识别问题。但是,由于药丸的外观之间的相似性很高,因此经常发生错误识别,因此识别药丸是一个挑战。为此,在本文中,我们介绍了一种名为Pika的新颖方法,该方法利用外部知识来增强药丸识别精度。具体来说,我们解决了一种实用的情况(我们称之为上下文药丸识别),旨在在患者药丸摄入量的情况下识别药丸。首先,我们提出了一种新的方法,用于建模在存在外部数据源的情况下,在这种情况下,在存在外部处方的情况下,药丸之间的隐式关联。其次,我们提出了一个基于步行的图形嵌入模型,该模型从图形空间转换为矢量空间,并提取药丸的凝结关系。第三,提供了最终框架,该框架利用基于图像的视觉和基于图的关系特征来完成药丸识别任务。在此框架内,每种药丸的视觉表示形式都映射到图形嵌入空间,然后用来通过图表执行注意力,从而产生了有助于最终分类的语义丰富的上下文矢量。据我们所知,这是第一项使用外部处方数据来建立药物之间的关联并使用此帮助信息对其进行分类的研究。皮卡(Pika)的体系结构轻巧,并且具有将识别骨架纳入任何识别骨架的灵活性。实验结果表明,通过利用外部知识图,与基线相比,PIKA可以将识别精度从4.8%提高到34.1%。
translated by 谷歌翻译
对于移动机器人来说,自主行驶安全性的能力,尤其是在动态环境中的能力至关重要。近年来,DRL方法在避免动态障碍物方面表现出了出色的表现。但是,这些基于学习的方法通常是在专门设计的仿真环境中开发的,并且很难针对传统的计划方法进行测试。此外,这些方法将这些方法的集成和部署到真正的机器人平台中尚未完全解决。在本文中,我们介绍了Arena-Bench,这是一套基准套件,可在3D环境中在不同机器人平台上进行训练,测试和评估导航计划者。它提供了设计和生成高度动态评估世界,场景和自动导航任务的工具,并已完全集成到机器人操作系统中。为了展示我们套件的功能,我们在平台上培训了DRL代理,并将其与各种相关指标上的各种现有基于模型和学习的导航方法进行了比较。最后,我们将方法部署到了真实的机器人方面,并证明了结果的可重复性。该代码可在github.com/ignc-research/arena-bench上公开获得。
translated by 谷歌翻译
从感知输入中学习通用表示是人类智力的标志。例如,人们可以通过将这些任务描述为相同的通用基础过程的不同实例来写出数字或字符,甚至绘制涂鸦,即不同形式的笔画的组成布置。至关重要的是,学会(例如写作)学习完成一项任务意味着由于这个共同的过程,在绘画中(绘图)意味着合理的能力。我们介绍了分布(DOOD)的图形,这是一种基于中风的图形的神经符号生成模型,可以学习这种通用用途。与先前的工作相反,DOOD直接在图像上运行,不需要监督或昂贵的测试时间推理,并且使用符号中风模型执行无监督的摊销推断,从而更好地实现了可解释性和概括性。我们评估了DOOD在数据和任务中概括的能力。我们首先执行从一个数据集(例如MNIST)到另一个数据集(例如QuickDraw),跨五个不同数据集的零射击传输,并显示DOOD明显优于不同基线的DOOD。对学习表示的分析进一步凸显了采用符号中风模型的好处。然后,我们采用Omniglot挑战任务的子集,并评估其生成新的示例(无论是无条件和有条件地)的能力,并执行一声分类,表明DOOD与最先进的状态相匹配。综上所述,我们证明了DOOD确实确实在数据和任务中捕获了通用表示形式,并迈出了迈向建立一般和健壮的概念学习系统的进一步步骤。
translated by 谷歌翻译
在过去的几十年中,由于其在广泛的应用中,现场文本认可从学术界和实际用户获得了全世界的关注。尽管在光学字符识别方面取得了成就,但由于诸如扭曲或不规则布局等固有问题,现场文本识别仍然具有挑战性。大多数现有方法主要利用基于复发或卷积的神经网络。然而,虽然经常性的神经网络(RNN)通常由于顺序计算而遭受慢的训练速度,并且遇到消失的梯度或瓶颈,但CNN在复杂性和性能之间衡量折衷。在本文中,我们介绍了SAFL,一种基于自我关注的神经网络模型,具有场景文本识别的焦点损失,克服现有方法的限制。使用焦损而不是负值对数似然有助于模型更多地关注低频样本训练。此外,为应对扭曲和不规则文本,我们在传递到识别网络之前,我们利用空间变换(STN)来纠正文本。我们执行实验以比较拟议模型的性能与七个基准。数值结果表明,我们的模型实现了最佳性能。
translated by 谷歌翻译