We tackle the problem of large scale visual place recognition, where the task is to quickly and accurately recognize the location of a given query photograph. We present the following three principal contributions. First, we develop a convolutional neural network (CNN) architecture that is trainable in an end-to-end manner directly for the place recognition task. The main component of this architecture, NetVLAD, is a new generalized VLAD layer, inspired by the "Vector of Locally Aggregated Descriptors" image representation commonly used in image retrieval. The layer is readily pluggable into any CNN architecture and amenable to training via backpropagation. Second, we develop a training procedure, based on a new weakly supervised ranking loss, to learn parameters of the architecture in an end-to-end manner from images depicting the same places over time downloaded from Google Street View Time Machine. Finally, we show that the proposed architecture significantly outperforms non-learnt image representations and off-the-shelf CNN descriptors on two challenging place recognition benchmarks, and improves over current stateof-the-art compact image representations on standard image retrieval benchmarks.
translated by 谷歌翻译
Robotic hands with soft surfaces can perform stable grasping, but the high friction of the soft surfaces makes it difficult to release objects, or to perform operations that require sliding. To solve this issue, we previously developed a contact area variable surface (CAVS), whose friction changed according to the load. However, only our fundamental results were previously presented, with detailed analyses not provided. In this study, we first investigated the CAVS friction anisotropy, and demonstrated that the longitudinal direction exhibited a larger ratio of friction change. Next, we proposed a sensible CAVS, capable of providing a variable-friction mechanism, and tested its sensing and control systems in operations requiring switching between sliding and stable-grasping modes. Friction sensing was performed using an embedded camera, and we developed a gripper using the sensible CAVS, considering the CAVS friction anisotropy. In CAVS, the low-friction mode corresponds to a small grasping force, while the high-friction mode corresponds to a greater grasping force. Therefore, by controlling only the friction mode, the gripper mode can be set to either the sliding or stable-grasping mode. Based on this feature, a methodology for controlling the contact mode was constructed. We demonstrated a manipulation involving sliding and stable grasping, and thus verified the efficacy of the developed sensible CAVS.
translated by 谷歌翻译
本文提出了一种用于端到端现场文本识别的新颖培训方法。端到端的场景文本识别提供高识别精度,尤其是在使用基于变压器的编码器 - 解码器模型时。要培训高度准确的端到端模型,我们需要为目标语言准备一个大型图像到文本配对数据集。但是,很难收集这些数据,特别是对于资源差的语言。为了克服这种困难,我们所提出的方法利用富裕的大型数据集,以资源丰富的语言,如英语,培训资源差的编码器解码器模型。我们的主要思想是建立一个模型,其中编码器反映了多种语言的知识,而解码器专门从事资源差的语言。为此,所提出的方法通过使用组合资源贫乏语言数据集和资源丰富的语言数据集的多语言数据集来预先培训编码器,以学习用于场景文本识别的语言不变知识。所提出的方法还通过使用资源贫乏语言的数据集预先列举解码器,使解码器更适合资源较差的语言。使用小型公共数据集进行日本现场文本识别的实验证明了该方法的有效性。
translated by 谷歌翻译
本文提出了一种用于对话序列标记的新型知识蒸馏方法。对话序列标签是监督的学习任务,估计目标对话文档中每个话语的标签,并且对于许多诸如对话法估计的许多应用是有用的。准确的标签通常通过分层结构化的大型模型来实现,这些大型模型组成的话语级和对话级网络,分别捕获话语内和话语之间的上下文。但是,由于其型号大小,因此无法在资源受限设备上部署此类模型。为了克服这种困难,我们专注于通过蒸馏了大型和高性能教师模型的知识来列举一个小型模型的知识蒸馏。我们的主要思想是蒸馏知识,同时保持教师模型捕获的复杂环境。为此,所提出的方法,等级知识蒸馏,通过蒸馏来列举小型模型,而不是通过培训模型在教师模型中培训的话语水平和对话级环境的知识模拟教师模型在每个级别的输出。对话法案估算和呼叫场景分割的实验证明了该方法的有效性。
translated by 谷歌翻译