本文通过将影响建模的任务视为强化学习(RL)过程,引入了范式转变。根据拟议的范式,RL代理通过尝试通过其环境(即背景)来最大化一组奖励(即行为和情感模式)来学习政策(即情感互动)。我们的假设是,RL是交织的有效范式影响引起和与行为和情感示威的表现。重要的是,我们对达马西奥的躯体标记假设的第二个假设建设是,情绪可以成为决策的促进者。我们通过训练Go-Blend Agents来对人类的唤醒和行为进行模型来检验赛车游戏中的假设; Go-Blend是Go-explore算法的修改版本,该版本最近在硬探索任务中展示了最高性能。我们首先改变了基于唤醒的奖励功能,并观察可以根据指定的奖励有效地显示情感和行为模式调色板的代理。然后,我们使用基于唤醒的状态选择机制来偏向Go-Blend探索的策略。我们的发现表明,Go-Blend不仅是有效的影响建模范式,而且更重要的是,情感驱动的RL改善了探索并产生更高的性能剂,从而验证了Damasio在游戏领域中的假设。
translated by 谷歌翻译
基于搜索的程序内容生成(PCG)是一种众所周知的方法,用于游戏中的水平生成。它的主要优势是它是通用且能够满足功能约束的能力。但是,由于在线运行这些算法的大量计算成本,因此很少将基于搜索的PCG用于实时生成。在本文中,我们使用机器学习介绍了一种新型的迭代级生成器。我们训练模型以模仿进化过程,并使用模型生成水平。该训练有素的模型能够顺序修改嘈杂的水平,以创建更好的水平,而无需在推理过程中使用健身函数。我们在2D迷宫生成任务上评估了训练有素的模型。我们比较了该方法的几个不同版本:在进化结束时训练模型或每100代(辅助进化),并在进化过程中使用模型作为突变函数。使用辅助进化过程,最终训练的模型能够以99%的成功率产生迷宫,高度多样性为86%。这项工作为以进化过程为指导的一种新的学习水平生成器打开了大门,并可能会增加游戏行业中基于搜索的PCG的采用。
translated by 谷歌翻译
我们研究了如何根据PlayTraces有效预测游戏角色。可以通过计算玩家与游戏行为的生成模型(所谓的程序角色)之间的动作协议比率来计算游戏角色。但这在计算上很昂贵,并假设很容易获得适当的程序性格。我们提出了两种用于估计玩家角色的方法,一种是使用定期监督的学习和启动游戏机制的汇总度量的方法,另一种是基于序列学习的序列学习的另一种方法。尽管这两种方法在预测与程序角色一致定义的游戏角色时都具有很高的精度,但它们完全无法预测玩家使用问卷的玩家本身定义的游戏风格。这个有趣的结果突出了使用计算方法定义游戏角色的价值。
translated by 谷歌翻译
本文介绍了一种全自动的机械照明方法,以实现一般视频游戏水平的生成。使用受约束的MAP-ELITE算法和GVG-AI框架,该系统生成了最简单的基于图块的级别,该级别包含特定的游戏机制集并满足可玩性约束。我们将这种方法应用于GVG-AI的$ 4 $不同游戏的机械空间:Zelda,Solarfox,Plants和eartortals。
translated by 谷歌翻译
The performance of the Deep Learning (DL) models depends on the quality of labels. In some areas, the involvement of human annotators may lead to noise in the data. When these corrupted labels are blindly regarded as the ground truth (GT), DL models suffer from performance deficiency. This paper presents a method that aims to learn a confident model in the presence of noisy labels. This is done in conjunction with estimating the uncertainty of multiple annotators. We robustly estimate the predictions given only the noisy labels by adding entropy or information-based regularizer to the classifier network. We conduct our experiments on a noisy version of MNIST, CIFAR-10, and FMNIST datasets. Our empirical results demonstrate the robustness of our method as it outperforms or performs comparably to other state-of-the-art (SOTA) methods. In addition, we evaluated the proposed method on the curated dataset, where the noise type and level of various annotators depend on the input image style. We show that our approach performs well and is adept at learning annotators' confusion. Moreover, we demonstrate how our model is more confident in predicting GT than other baselines. Finally, we assess our approach for segmentation problem and showcase its effectiveness with experiments.
translated by 谷歌翻译
Recent advances in upper limb prostheses have led to significant improvements in the number of movements provided by the robotic limb. However, the method for controlling multiple degrees of freedom via user-generated signals remains challenging. To address this issue, various machine learning controllers have been developed to better predict movement intent. As these controllers become more intelligent and take on more autonomy in the system, the traditional approach of representing the human-machine interface as a human controlling a tool becomes limiting. One possible approach to improve the understanding of these interfaces is to model them as collaborative, multi-agent systems through the lens of joint action. The field of joint action has been commonly applied to two human partners who are trying to work jointly together to achieve a task, such as singing or moving a table together, by effecting coordinated change in their shared environment. In this work, we compare different prosthesis controllers (proportional electromyography with sequential switching, pattern recognition, and adaptive switching) in terms of how they present the hallmarks of joint action. The results of the comparison lead to a new perspective for understanding how existing myoelectric systems relate to each other, along with recommendations for how to improve these systems by increasing the collaborative communication between each partner.
translated by 谷歌翻译
Nowadays, the current neural network models of dialogue generation(chatbots) show great promise for generating answers for chatty agents. But they are short-sighted in that they predict utterances one at a time while disregarding their impact on future outcomes. Modelling a dialogue's future direction is critical for generating coherent, interesting dialogues, a need that has led traditional NLP dialogue models that rely on reinforcement learning. In this article, we explain how to combine these objectives by using deep reinforcement learning to predict future rewards in chatbot dialogue. The model simulates conversations between two virtual agents, with policy gradient methods used to reward sequences that exhibit three useful conversational characteristics: the flow of informality, coherence, and simplicity of response (related to forward-looking function). We assess our model based on its diversity, length, and complexity with regard to humans. In dialogue simulation, evaluations demonstrated that the proposed model generates more interactive responses and encourages a more sustained successful conversation. This work commemorates a preliminary step toward developing a neural conversational model based on the long-term success of dialogues.
translated by 谷歌翻译
In this work, we introduce a hypergraph representation learning framework called Hypergraph Neural Networks (HNN) that jointly learns hyperedge embeddings along with a set of hyperedge-dependent embeddings for each node in the hypergraph. HNN derives multiple embeddings per node in the hypergraph where each embedding for a node is dependent on a specific hyperedge of that node. Notably, HNN is accurate, data-efficient, flexible with many interchangeable components, and useful for a wide range of hypergraph learning tasks. We evaluate the effectiveness of the HNN framework for hyperedge prediction and hypergraph node classification. We find that HNN achieves an overall mean gain of 7.72% and 11.37% across all baseline models and graphs for hyperedge prediction and hypergraph node classification, respectively.
translated by 谷歌翻译
A "heart attack" or myocardial infarction (MI), occurs when an artery supplying blood to the heart is abruptly occluded. The "gold standard" method for imaging MI is Cardiovascular Magnetic Resonance Imaging (MRI), with intravenously administered gadolinium-based contrast (late gadolinium enhancement). However, no "gold standard" fully automated method for the quantification of MI exists. In this work, we propose an end-to-end fully automatic system (MyI-Net) for the detection and quantification of MI in MRI images. This has the potential to reduce the uncertainty due to the technical variability across labs and inherent problems of the data and labels. Our system consists of four processing stages designed to maintain the flow of information across scales. First, features from raw MRI images are generated using feature extractors built on ResNet and MoblieNet architectures. This is followed by the Atrous Spatial Pyramid Pooling (ASPP) to produce spatial information at different scales to preserve more image context. High-level features from ASPP and initial low-level features are concatenated at the third stage and then passed to the fourth stage where spatial information is recovered via up-sampling to produce final image segmentation output into: i) background, ii) heart muscle, iii) blood and iv) scar areas. New models were compared with state-of-art models and manual quantification. Our models showed favorable performance in global segmentation and scar tissue detection relative to state-of-the-art work, including a four-fold better performance in matching scar pixels to contours produced by clinicians.
translated by 谷歌翻译
Increasing popularity of deep-learning-powered applications raises the issue of vulnerability of neural networks to adversarial attacks. In other words, hardly perceptible changes in input data lead to the output error in neural network hindering their utilization in applications that involve decisions with security risks. A number of previous works have already thoroughly evaluated the most commonly used configuration - Convolutional Neural Networks (CNNs) against different types of adversarial attacks. Moreover, recent works demonstrated transferability of the some adversarial examples across different neural network models. This paper studied robustness of the new emerging models such as SpinalNet-based neural networks and Compact Convolutional Transformers (CCT) on image classification problem of CIFAR-10 dataset. Each architecture was tested against four White-box attacks and three Black-box attacks. Unlike VGG and SpinalNet models, attention-based CCT configuration demonstrated large span between strong robustness and vulnerability to adversarial examples. Eventually, the study of transferability between VGG, VGG-inspired SpinalNet and pretrained CCT 7/3x1 models was conducted. It was shown that despite high effectiveness of the attack on the certain individual model, this does not guarantee the transferability to other models.
translated by 谷歌翻译