Yolov7在5 fps到160 fps的速度和准确性上都超过了所有已知对象探测器,并且在GPU V100上具有30 fps或更高的所有已知实时对象探测器中,精度最高的56.8%AP。YOLOV7-E6对象检测器(56 fps v100,55.9%AP)优于两个基于变压器的检测器SWIN-L-CASCADE MAKS R-CNN(9.2 fps A100,53.9%AP)的速度和2%的准确性和2%基于卷积的检测器Convnext-XL级联膜面罩R-CNN(8.6 fps a100,55.2%AP)的速度为551%,精度为0.7%AP,Yolov7优于:Yolor,Yolox,Yolox,Scaled-Yolov4,Yolov4,Yolov5,Yolov5,Yolov5,Yolov5,Yolov5,Yolov5,Yolov5,Yolov5,Yolov5,DETR,可变形的DETR,DINO-5SCALE-R50,VIT-ADAPTER-B和许多其他对象探测器的速度和准确性。此外,我们仅在不使用任何其他数据集或预先训练的权重的情况下从头开始训练Yolov7。源代码在https://github.com/wongkinyiu/yolov7中发布。
translated by 谷歌翻译
Designing a high-efficiency and high-quality expressive network architecture has always been the most important research topic in the field of deep learning. Most of today's network design strategies focus on how to integrate features extracted from different layers, and how to design computing units to effectively extract these features, thereby enhancing the expressiveness of the network. This paper proposes a new network design strategy, i.e., to design the network architecture based on gradient path analysis. On the whole, most of today's mainstream network design strategies are based on feed forward path, that is, the network architecture is designed based on the data path. In this paper, we hope to enhance the expressive ability of the trained model by improving the network learning ability. Due to the mechanism driving the network parameter learning is the backward propagation algorithm, we design network design strategies based on back propagation path. We propose the gradient path design strategies for the layer-level, the stage-level, and the network-level, and the design strategies are proved to be superior and feasible from theoretical analysis and experiments.
translated by 谷歌翻译
无人驾驶飞机(UAV)的实时对象检测是一个具有挑战性的问题,因为Edge GPU设备作为物联网(IoT)节点的计算资源有限。为了解决这个问题,在本文中,我们提出了一种基于Yolox模型的新型轻型深度学习体系结构,用于Edge GPU上的实时对象检测。首先,我们设计了一个有效且轻巧的PixSF头,以更换Yolox的原始头部以更好地检测小物体,可以将其进一步嵌入深度可分离的卷积(DS Conv)中,以达到更轻的头。然后,开发为减少网络参数的颈层中的较小结构,这是精度和速度之间的权衡。此外,我们将注意模块嵌入头层中,以改善预测头的特征提取效果。同时,我们还改进了标签分配策略和损失功能,以减轻UAV数据集的类别不平衡和盒子优化问题。最后,提出了辅助头进行在线蒸馏,以提高PIXSF Head中嵌入位置嵌入和特征提取的能力。在NVIDIA Jetson NX和Jetson Nano GPU嵌入平台上,我们的轻质模型的性能得到了实验验证。扩展的实验表明,与目前的模型相比,Fasterx模型在Visdrone2021数据集中实现了更好的折衷和延迟之间的折衷。
translated by 谷歌翻译
In this report, we present a fast and accurate object detection method dubbed DAMO-YOLO, which achieves higher performance than the state-of-the-art YOLO series. DAMO-YOLO is extended from YOLO with some new technologies, including Neural Architecture Search (NAS), efficient Reparameterized Generalized-FPN (RepGFPN), a lightweight head with AlignedOTA label assignment, and distillation enhancement. In particular, we use MAE-NAS, a method guided by the principle of maximum entropy, to search our detection backbone under the constraints of low latency and high performance, producing ResNet-like / CSP-like structures with spatial pyramid pooling and focus modules. In the design of necks and heads, we follow the rule of "large neck, small head". We import Generalized-FPN with accelerated queen-fusion to build the detector neck and upgrade its CSPNet with efficient layer aggregation networks (ELAN) and reparameterization. Then we investigate how detector head size affects detection performance and find that a heavy neck with only one task projection layer would yield better results. In addition, AlignedOTA is proposed to solve the misalignment problem in label assignment. And a distillation schema is introduced to improve performance to a higher level. Based on these new techs, we build a suite of models at various scales to meet the needs of different scenarios, i.e., DAMO-YOLO-Tiny/Small/Medium. They can achieve 43.0/46.8/50.0 mAPs on COCO with the latency of 2.78/3.83/5.62 ms on T4 GPUs respectively. The code is available at https://github.com/tinyvision/damo-yolo.
translated by 谷歌翻译
多年来,Yolo系列一直是有效对象检测的事实上的行业级别标准。尤洛社区(Yolo Community)绝大多数繁荣,以丰富其在众多硬件平台和丰富场景中的使用。在这份技术报告中,我们努力将其限制推向新的水平,以坚定不移的行业应用心态前进。考虑到对真实环境中速度和准确性的多种要求,我们广泛研究了行业或学术界的最新对象检测进步。具体而言,我们从最近的网络设计,培训策略,测试技术,量化和优化方法中大量吸收了思想。最重要的是,我们整合了思想和实践,以在各种规模上建立一套可供部署的网络,以适应多元化的用例。在Yolo作者的慷慨许可下,我们将其命名为Yolov6。我们还向用户和贡献者表示热烈欢迎,以进一步增强。为了了解性能,我们的Yolov6-N在NVIDIA TESLA T4 GPU上以1234 fps的吞吐量在可可数据集上击中35.9%的AP。 Yolov6-S在495 fps处的43.5%AP罢工,在相同规模〜(Yolov5-S,Yolox-S和Ppyoloe-S)上超过其他主流探测器。我们的量化版本的Yolov6-S甚至在869 fps中带来了新的43.3%AP。此外,与其他推理速度相似的检测器相比,Yolov6-m/L的精度性能(即49.5%/52.3%)更好。我们仔细进行了实验以验证每个组件的有效性。我们的代码可在https://github.com/meituan/yolov6上提供。
translated by 谷歌翻译
更好的准确性和效率权衡在对象检测中是一个具有挑战性的问题。在这项工作中,我们致力于研究对象检测的关键优化和神经网络架构选择,以提高准确性和效率。我们调查了无锚策略对轻质对象检测模型的适用性。我们增强了骨干结构并设计了颈部的轻质结构,从而提高了网络的特征提取能力。我们改善标签分配策略和损失功能,使培训更稳定和高效。通过这些优化,我们创建了一个名为PP-Picodet的新的实时对象探测器系列,这在移动设备的对象检测上实现了卓越的性能。与其他流行型号相比,我们的模型在准确性和延迟之间实现了更好的权衡。 Picodet-s只有0.99m的参数达到30.6%的地图,它是地图的绝对4.8%,同时与yolox-nano相比将移动CPU推理延迟减少55%,并且与Nanodet相比,MAP的绝对改善了7.1%。当输入大小为320时,它在移动臂CPU上达到123个FPS(使用桨Lite)。Picodet-L只有3.3M参数,达到40.9%的地图,这是地图的绝对3.7%,比yolov5s更快44% 。如图1所示,我们的模型远远优于轻量级对象检测的最先进的结果。代码和预先训练的型号可在https://github.com/paddlepaddle/paddledentions提供。
translated by 谷歌翻译
In this report, we present PP-YOLOE, an industrial state-of-the-art object detector with high performance and friendly deployment. We optimize on the basis of the previous PP-YOLOv2, using anchor-free paradigm, more powerful backbone and neck equipped with CSPRepResStage, ET-head and dynamic label assignment algorithm TAL. We provide s/m/l/x models for different practice scenarios. As a result, PP-YOLOE-l achieves 51.4 mAP on COCO test-dev and 78.1 FPS on Tesla V100, yielding a remarkable improvement of (+1.9 AP, +13.35% speed up) and (+1.3 AP, +24.96% speed up), compared to the previous state-of-the-art industrial models PP-YOLOv2 and YOLOX respectively. Further, PP-YOLOE inference speed achieves 149.2 FPS with TensorRT and FP16-precision. We also conduct extensive experiments to verify the effectiveness of our designs. Source code and pre-trained models are available at https://github.com/PaddlePaddle/PaddleDetection.
translated by 谷歌翻译
In this paper, we aim to design an efficient real-time object detector that exceeds the YOLO series and is easily extensible for many object recognition tasks such as instance segmentation and rotated object detection. To obtain a more efficient model architecture, we explore an architecture that has compatible capacities in the backbone and neck, constructed by a basic building block that consists of large-kernel depth-wise convolutions. We further introduce soft labels when calculating matching costs in the dynamic label assignment to improve accuracy. Together with better training techniques, the resulting object detector, named RTMDet, achieves 52.8% AP on COCO with 300+ FPS on an NVIDIA 3090 GPU, outperforming the current mainstream industrial detectors. RTMDet achieves the best parameter-accuracy trade-off with tiny/small/medium/large/extra-large model sizes for various application scenarios, and obtains new state-of-the-art performance on real-time instance segmentation and rotated object detection. We hope the experimental results can provide new insights into designing versatile real-time object detectors for many object recognition tasks. Code and models are released at https://github.com/open-mmlab/mmdetection/tree/3.x/configs/rtmdet.
translated by 谷歌翻译
在传统的对象检测框架中,从图像识别模型继承的骨干体提取了深层特征,然后颈部模块融合了这些潜在特征,以在不同的尺度上捕获信息。由于对象检测的分辨率比图像识别大得多,因此骨干的计算成本通常主导了总推断成本。这种沉重的背部设计范式主要是由于历史遗产将图像识别模型传输到对象检测时,而不是端到端的优化设计以进行对象检测。在这项工作中,我们表明这种范式确实导致了亚最佳对象检测模型。为此,我们提出了一种新型的重颈范式,长颈鹿,这是一个类似长颈鹿的网络,用于有效的对象检测。长颈鹿使用极轻的骨干和非常深的颈部模块,可同时同时在不同的空间尺度以及不同级别的潜在语义之间进行密集的信息交换。该设计范式允许检测器即使在网络的早期阶段,也可以在相同的优先级处理高级语义信息和低级空间信息,从而使其在检测任务中更有效。对多个流行对象检测基准的数值评估表明,长颈鹿在广泛的资源约束中始终优于先前的SOTA模型。源代码可在https://github.com/jyqi/giraffedet上获得。
translated by 谷歌翻译
特征金字塔网络(FPN)已成为对象检测模型考虑对象的各种尺度的重要模块。但是,小物体上的平均精度(AP)相对低于中和大物体上的AP。原因是CNN较深层导致信息丢失作为特征提取水平的原因。我们提出了一个新的比例顺序(S^2)特征FPN的特征提取,以增强小物体的特征信息。我们将FPN结构视为尺度空间和提取尺度序列(s^2)特征,该特征是在FPN的水平轴上通过3D卷积。它基本上是扩展不变的功能,并建立在小物体的高分辨率金字塔功能图上。此外,建议的S^2功能可以扩展到基于FPN的大多数对象检测模型。我们证明所提出的S2功能可以提高COCO数据集中一阶段和两阶段探测器的性能。根据提出的S2功能,我们分别为Yolov4-P5和Yolov4-P6获得了高达1.3%和1.1%的AP改善。对于更快的RCNN和Mask R-CNN,我们分别观察到AP改进的2.0%和1.6%,分别具有建议的S^2功能。
translated by 谷歌翻译
由于卷积在提取物体的局部上下文中,在过去十年中,对象检测在过去十年中取得了重大进展。但是,对象的尺度是多样的,当前卷积只能处理单尺度输入。因此,传统卷积具有固定接收场在处理这种规模差异问题方面的能力受到限制。多尺度功能表示已被证明是缓解规模差异问题的有效方法。最近的研究主要与某些量表或各个尺度的总体特征采用部分联系,并专注于整个量表的全球信息。但是,跨空间和深度维度的信息被忽略了。受此启发,我们提出了多尺度卷积(MSCONV)来解决此问题。同时考虑到量表,空间和深度信息,MSCONV能够更全面地处理多尺度输入。 MSCONV是有效的,并且在计算上是有效的,只有少量计算成本增加。对于大多数单阶段对象探测器,在检测头中用MSCONV代替传统的卷积可以带来AP的2.5 \%改进(在Coco 2017数据集上),只有3 \%的拖鞋增加了。 MSCONV对于两阶段对象探测器也具有灵活性和有效性。当扩展到主流两阶段对象检测器时,MSCONV的AP可以提高3.0 \%。我们在单尺度测试下的最佳模型在Coco 2017上实现了48.9 \%AP,\ textit {test-dev} Split,它超过了许多最新方法。
translated by 谷歌翻译
在对象检测模型中,检测骨干机消耗超过一半的整体推理成本。最近的研究试图通过在神经结构搜索(NAS)的帮助下优化骨干架构来降低这一成本。然而,对象检测的现有NAS方法需要数百至数千个GPU小时的搜索,使它们在快节奏的研究和开发中不切实际。在这项工作中,我们提出了一种新的零射NAS方法来解决这个问题。所提出的方法,命名为Zendet,在不训练网络参数的情况下自动设计有效的检测骨干网,从而降低了架构设计成本,几乎归零但提供了最先进的(SOTA)性能。在引擎盖下,Zendet最大化了检测骨干的差分熵,导致对象检测的更好的特征提取器,在相同的计算预算下。在仅为全自动设计的一个GPU日之后,Zendet在多个检测基准数据集上创新了SOTA检测骨干,具有很少的人为干预。与Reset-50个骨干相比,Zendet在Map中使用相同数量的拖波/参数时更好地+ 2.0%,并且在同一地图上的NVIDIA V100速度快1.54倍。稍后将发布代码和预先训练的型号。
translated by 谷歌翻译
现代物体检测网络追求一般物体检测数据集的更高精度,同时计算负担也随着精度的提高而越来越多。然而,推理时间和精度对于需要是实时的对象检测系统至关重要。没有额外的计算成本,有必要研究精度改进。在这项工作中,提出了两种模块以提高零成本的检测精度,这是一般对象检测网络的FPN和检测头改进。我们采用规模注意机制,以有效地保险熔断多级功能映射,参数较少,称为SA-FPN模块。考虑到分类头和回归头的相关性,我们使用顺序头取代广泛使用的并联头部,称为SEQ-Head模块。为了评估有效性,我们将这两个模块应用于一些现代最先进的对象检测网络,包括基于锚和无锚。 Coco DataSet上的实验结果表明,具有两个模块的网络可以将原始网络超越1.1 AP和0.8 AP,分别为锚的锚和无锚网络的零成本。代码将在https://git.io/jtfgl提供。
translated by 谷歌翻译
由于存储器和计算资源有限,部署在移动设备上的卷积神经网络(CNNS)是困难的。我们的目标是通过利用特征图中的冗余来设计包括CPU和GPU的异构设备的高效神经网络,这很少在神经结构设计中进行了研究。对于类似CPU的设备,我们提出了一种新颖的CPU高效的Ghost(C-Ghost)模块,以生成从廉价操作的更多特征映射。基于一组内在的特征映射,我们使用廉价的成本应用一系列线性变换,以生成许多幽灵特征图,可以完全揭示内在特征的信息。所提出的C-Ghost模块可以作为即插即用组件,以升级现有的卷积神经网络。 C-Ghost瓶颈旨在堆叠C-Ghost模块,然后可以轻松建立轻量级的C-Ghostnet。我们进一步考虑GPU设备的有效网络。在建筑阶段的情况下,不涉及太多的GPU效率(例如,深度明智的卷积),我们建议利用阶段明智的特征冗余来制定GPU高效的幽灵(G-GHOST)阶段结构。舞台中的特征被分成两个部分,其中使用具有较少输出通道的原始块处理第一部分,用于生成内在特征,另一个通过利用阶段明智的冗余来生成廉价的操作。在基准测试上进行的实验证明了所提出的C-Ghost模块和G-Ghost阶段的有效性。 C-Ghostnet和G-Ghostnet分别可以分别实现CPU和GPU的准确性和延迟的最佳权衡。代码可在https://github.com/huawei-noah/cv-backbones获得。
translated by 谷歌翻译
本文提出了平行残留的双融合特征金字塔网络(PRB-FPN),以快速准确地单光对象检测。特征金字塔(FP)在最近的视觉检测中被广泛使用,但是由于汇总转换,FP的自上而下的途径无法保留准确的定位。随着使用更多层的更深骨干,FP的优势被削弱了。此外,它不能同时准确地检测到小物体。为了解决这些问题,我们提出了一种新的并行FP结构,具有双向(自上而下和自下而上)的融合以及相关的改进,以保留高质量的特征以进行准确定位。我们提供以下设计改进:(1)具有自下而上的融合模块(BFM)的平行分歧FP结构,以高精度立即检测小物体和大对象。 (2)串联和重组(CORE)模块为特征融合提供了自下而上的途径,该途径导致双向融合FP,可以从低层特征图中恢复丢失的信息。 (3)进一步纯化核心功能以保留更丰富的上下文信息。自上而下和自下而上的途径中的这种核心净化只能在几次迭代中完成。 (4)将残留设计添加到核心中,导致了一个新的重核模块,该模块可以轻松训练和集成,并具有更深入或更轻的骨架。所提出的网络可在UAVDT17和MS COCO数据集上实现最新性能。代码可在https://github.com/pingyang1117/prbnet_pytorch上找到。
translated by 谷歌翻译
我们分析了实时对象检测模型的网络结构,发现功能串联阶段中的特征非常丰富。在此处应用注意模块可以有效提高模型的检测准确性。但是,常用的注意模块或自我发项模块在检测准确性和推理效率方面的性能差。因此,我们提出了一个新型的自我发场模块,称为颈部网络的特征串联阶段,称为2D局部特征叠加的自我注意。这个自我发场模块通过局部特征和本地接收场反映了全球特征。我们还建议并优化有效的脱钩头和AB-OTA,并实现SOTA结果。对于使用我们建议的改进,获得了49.0 \%(66.2 fps),46.1 \%(80.6 fps)和39.1 \%(100 fps)的平均精度。我们的模型平均精度超过了Yolov5 0.8 \%-3.1 \%。
translated by 谷歌翻译
视觉变压器(VIT)正在改变对象检测方法的景观。 VIT的自然使用方法是用基于变压器的骨干替换基于CNN的骨干,该主链很简单有效,其价格为推理带来了可观的计算负担。更微妙的用法是DEDR家族,它消除了对物体检测中许多手工设计的组件的需求,但引入了一个解码器,要求超长时间进行融合。结果,基于变压器的对象检测不能在大规模应用中占上风。为了克服这些问题,我们提出了一种新型的无解码器基于完全变压器(DFFT)对象检测器,这是第一次在训练和推理阶段达到高效率。我们通过居中两个切入点来简化反对检测到仅编码单级锚点的密集预测问题:1)消除训练感知的解码器,并利用两个强的编码器来保留单层特征映射预测的准确性; 2)探索具有有限的计算资源的检测任务的低级语义特征。特别是,我们设计了一种新型的轻巧的面向检测的变压器主链,该主链有效地捕获了基于良好的消融研究的丰富语义的低级特征。 MS Coco基准测试的广泛实验表明,DFFT_SMALL的表现优于2.5%AP,计算成本降低28%,$ 10 \ $ 10 \乘以$ 10 \乘以$较少的培训时期。与尖端的基于锚的探测器视网膜相比,DFFT_SMALL获得了超过5.5%的AP增益,同时降低了70%的计算成本。
translated by 谷歌翻译
面部检测是为了在图像中搜索面部的所有可能区域,并且如果有任何情况,则定位面部。包括面部识别,面部表情识别,面部跟踪和头部姿势估计的许多应用假设面部的位置和尺寸在图像中是已知的。近几十年来,研究人员从Viola-Jones脸上检测器创造了许多典型和有效的面部探测器到当前的基于CNN的CNN。然而,随着图像和视频的巨大增加,具有面部刻度的变化,外观,表达,遮挡和姿势,传统的面部探测器被挑战来检测野外面孔的各种“脸部。深度学习技术的出现带来了非凡的检测突破,以及计算的价格相当大的价格。本文介绍了代表性的深度学习的方法,并在准确性和效率方面提出了深度和全面的分析。我们进一步比较并讨论了流行的并挑战数据集及其评估指标。进行了几种成功的基于深度学习的面部探测器的全面比较,以使用两个度量来揭示其效率:拖鞋和延迟。本文可以指导为不同应用选择合适的面部探测器,也可以开发更高效和准确的探测器。
translated by 谷歌翻译
Model efficiency has become increasingly important in computer vision. In this paper, we systematically study neural network architecture design choices for object detection and propose several key optimizations to improve efficiency. First, we propose a weighted bi-directional feature pyramid network (BiFPN), which allows easy and fast multiscale feature fusion; Second, we propose a compound scaling method that uniformly scales the resolution, depth, and width for all backbone, feature network, and box/class prediction networks at the same time. Based on these optimizations and better backbones, we have developed a new family of object detectors, called EfficientDet, which consistently achieve much better efficiency than prior art across a wide spectrum of resource constraints. In particular, with singlemodel and single-scale, our EfficientDet-D7 achieves stateof-the-art 55.1 AP on COCO test-dev with 77M parameters and 410B FLOPs 1 , being 4x -9x smaller and using 13x -42x fewer FLOPs than previous detectors. Code is available at https://github.com/google/automl/tree/ master/efficientdet.
translated by 谷歌翻译