受益于通用对象探测器的开创性设计,面部检测领域已经取得了重大成就。通常,骨干,特征金字塔层和面部检测器内的检测头模块的架构都同化了一般物体探测器的优异体验。然而,几种有效方法,包括标签分配和尺度级数据增强策略\脚注{丰富了培训数据的规模分布,以解决尺度方差挑战。},在直接施加面部探测器时,不能保持一致的优势。具体地,前者策略涉及庞大的超参数,后者患有不同检测任务之间的规模分布偏差的挑战,这都限制了它们的概括能力。此外,为了提供用于面部下游任务的精确面边界盒,面部检测器要求消除误报。因此,对推进面部检测器需要对标签分配,尺度级数据增强和减少误报的实用解决方案。在本文中,我们专注于解决三个上述挑战,即退出方法难以结束并呈现新的面部探测器,称为摩戈。在我们的MOGFACE中,三个关键组件,自适应在线增量锚挖掘策略,选择性缩放增强策略和分层上下文感知模块,分别提出促进面部检测的性能。最后,据我们所知,我们的摩日脸是更广泛的面部领导板上最好的面部探测器,在不同的测试场景中实现所有冠军。代码可在https://github.com/idstcv/mogface上获得
translated by 谷歌翻译
面部检测是为了在图像中搜索面部的所有可能区域,并且如果有任何情况,则定位面部。包括面部识别,面部表情识别,面部跟踪和头部姿势估计的许多应用假设面部的位置和尺寸在图像中是已知的。近几十年来,研究人员从Viola-Jones脸上检测器创造了许多典型和有效的面部探测器到当前的基于CNN的CNN。然而,随着图像和视频的巨大增加,具有面部刻度的变化,外观,表达,遮挡和姿势,传统的面部探测器被挑战来检测野外面孔的各种“脸部。深度学习技术的出现带来了非凡的检测突破,以及计算的价格相当大的价格。本文介绍了代表性的深度学习的方法,并在准确性和效率方面提出了深度和全面的分析。我们进一步比较并讨论了流行的并挑战数据集及其评估指标。进行了几种成功的基于深度学习的面部探测器的全面比较,以使用两个度量来揭示其效率:拖鞋和延迟。本文可以指导为不同应用选择合适的面部探测器,也可以开发更高效和准确的探测器。
translated by 谷歌翻译
Object detection has been dominated by anchor-based detectors for several years. Recently, anchor-free detectors have become popular due to the proposal of FPN and Focal Loss. In this paper, we first point out that the essential difference between anchor-based and anchor-free detection is actually how to define positive and negative training samples, which leads to the performance gap between them. If they adopt the same definition of positive and negative samples during training, there is no obvious difference in the final performance, no matter regressing from a box or a point. This shows that how to select positive and negative training samples is important for current object detectors. Then, we propose an Adaptive Training Sample Selection (ATSS) to automatically select positive and negative samples according to statistical characteristics of object. It significantly improves the performance of anchor-based and anchor-free detectors and bridges the gap between them. Finally, we discuss the necessity of tiling multiple anchors per location on the image to detect objects. Extensive experiments conducted on MS COCO support our aforementioned analysis and conclusions. With the newly introduced ATSS, we improve stateof-the-art detectors by a large margin to 50.7% AP without introducing any overhead. The code is available at https://github.com/sfzhang15/ATSS.
translated by 谷歌翻译
检测微小的物体是一个非常具有挑战性的问题,因为一个小物体只包含几个像素的大小。我们证明,由于缺乏外观信息,最新的检测器不会对微小物体产生令人满意的结果。我们的主要观察结果是,基于联合(IOU)的相交(例如IOU本身及其扩展)对微小物体的位置偏差非常敏感,并且在基于锚固的检测器中使用时会大大恶化检测性能。为了减轻这一点,我们提出了使用Wasserstein距离进行微小对象检测的新评估度量。具体而言,我们首先将边界框建模为2D高斯分布,然后提出一个新的公制称为标准化的瓦斯汀距离(NWD),以通过相应的高斯分布来计算它们之间的相似性。提出的NWD度量可以轻松地嵌入分配中,非最大抑制作用以及任何基于锚固的检测器的损耗函数,以替换常用的IOU度量。我们在新的数据集上评估了我们的度量,以用于微小对象检测(AI-TOD),其中平均对象大小比现有对象检测数据集小得多。广泛的实验表明,在配备NWD指标时,我们的方法的性能比标准的微调基线高6.7 AP点,并且比最先进的竞争对手高6.0 AP点。代码可在以下网址提供:https://github.com/jwwangchn/nwd。
translated by 谷歌翻译
近年来,基于深度学习的面部检测算法取得了长足的进步。这些算法通常可以分为两类,即诸如更快的R-CNN和像Yolo这样的单阶段检测器之类的两个阶段检测器。由于准确性和速度之间的平衡更好,因此在许多应用中广泛使用了一阶段探测器。在本文中,我们提出了一个基于一阶段检测器Yolov5的实时面部检测器,名为Yolo-Facev2。我们设计一个称为RFE的接收场增强模块,以增强小面的接受场,并使用NWD损失来弥补IOU对微小物体的位置偏差的敏感性。对于面部阻塞,我们提出了一个名为Seam的注意模块,并引入了排斥损失以解决它。此外,我们使用重量函数幻灯片来解决简单和硬样品之间的不平衡,并使用有效的接收场的信息来设计锚。宽面数据集上的实验结果表明,在所有简单,中和硬子集中都可以找到我们的面部检测器及其变体的表现及其变体。源代码https://github.com/krasjet-yu/yolo-facev2
translated by 谷歌翻译
物体检测在计算机视觉中取得了巨大的进步。具有外观降级的小物体检测是一个突出的挑战,特别是对于鸟瞰观察。为了收集足够的阳性/阴性样本进行启发式训练,大多数物体探测器预设区域锚,以便将交叉联盟(iou)计算在地面判处符号数据上。在这种情况下,小物体经常被遗弃或误标定。在本文中,我们提出了一种有效的动态增强锚(DEA)网络,用于构建新颖的训练样本发生器。与其他最先进的技术不同,所提出的网络利用样品鉴别器来实现基于锚的单元和无锚单元之间的交互式样本筛选,以产生符合资格的样本。此外,通过基于保守的基于锚的推理方案的多任务联合训练增强了所提出的模型的性能,同时降低计算复杂性。所提出的方案支持定向和水平对象检测任务。对两个具有挑战性的空中基准(即,DotA和HRSC2016)的广泛实验表明,我们的方法以适度推理速度和用于训练的计算开销的准确性实现最先进的性能。在DotA上,我们的DEA-NET与ROI变压器的基线集成了0.40%平均平均精度(MAP)的先进方法,以便用较弱的骨干网(Resnet-101 VS Resnet-152)和3.08%平均 - 平均精度(MAP),具有相同骨干网的水平对象检测。此外,我们的DEA网与重新排列的基线一体化实现最先进的性能80.37%。在HRSC2016上,它仅使用3个水平锚点超过1.1%的最佳型号。
translated by 谷歌翻译
航空图像中的微小对象检测(TOD)是具有挑战性的,因为一个小物体只包含几个像素。最先进的对象探测器由于缺乏判别特征的监督而无法为微小对象提供令人满意的结果。我们的主要观察结果是,联合度量(IOU)及其扩展的相交对微小物体的位置偏差非常敏感,这在基于锚固的探测器中使用时会大大恶化标签分配的质量。为了解决这个问题,我们提出了一种新的评估度量标准,称为标准化的Wasserstein距离(NWD)和一个新的基于排名的分配(RKA)策略,以进行微小对象检测。提出的NWD-RKA策略可以轻松地嵌入到各种基于锚的探测器中,以取代标准的基于阈值的检测器,从而大大改善了标签分配并为网络培训提供了足够的监督信息。在四个数据集中测试,NWD-RKA可以始终如一地提高微小的对象检测性能。此外,在空中图像(AI-TOD)数据集中观察到显着的嘈杂标签,我们有动力将其重新标记并释放AI-TOD-V2及其相应的基准。在AI-TOD-V2中,丢失的注释和位置错误问题得到了大大减轻,从而促进了更可靠的培训和验证过程。将NWD-RKA嵌入探测器中,检测性能比AI-TOD-V2上的最先进竞争对手提高了4.3个AP点。数据集,代码和更多可视化可在以下网址提供:https://chasel-tsui.g​​ithub.io/ai/ai-tod-v2/
translated by 谷歌翻译
现代卷积神经网络(CNN)的面部探测器由于大量注释的数据集而取得了巨大的进步。但是,以高检测置信度未对准结果,但定位精度较低,限制了检测性能的进一步改善。在本文中,作者首先预测了训练集本身的高置信度检测结果。令人惊讶的是,其中相当一部分存在于同一未对准问题中。然后,作者仔细检查了这些案例,并指出注释未对准是主要原因。后来,对预测和注释的边界盒之间的替代合理性进行了全面讨论。最后,作者提出了一种新颖的边界盒深校准(BDC)方法,以通过模型预测的边界盒合理地替换未对准的注释,并为训练集提供校准的注释。在多个检测器和两个流行的基准数据集上进行了广泛的实验,显示了BDC对提高模型的精度和召回率的有效性,而无需添加额外的推理时间和记忆消耗。我们简单有效的方法为改善面部检测提供了一种一般策略,尤其是在实时情况下轻巧检测器的一般策略。
translated by 谷歌翻译
物体检测通常需要在现代深度学习方法中基于传统或锚盒的滑动窗口分类器。但是,这些方法中的任何一个都需要框中的繁琐配置。在本文中,我们提供了一种新的透视图,其中检测对象被激励为高电平语义特征检测任务。与边缘,角落,斑点和其他特征探测器一样,所提出的探测器扫描到全部图像的特征点,卷积自然适合该特征点。但是,与这些传统的低级功能不同,所提出的探测器用于更高级别的抽象,即我们正在寻找有物体的中心点,而现代深层模型已经能够具有如此高级别的语义抽象。除了Blob检测之外,我们还预测了中心点的尺度,这也是直接的卷积。因此,在本文中,通过卷积简化了行人和面部检测作为直接的中心和规模预测任务。这样,所提出的方法享有一个无盒设置。虽然结构简单,但它对几个具有挑战性的基准呈现竞争准确性,包括行人检测和面部检测。此外,执行交叉数据集评估,证明所提出的方法的卓越泛化能力。可以访问代码和模型(https://github.com/liuwei16/csp和https://github.com/hasanirtiza/pedestron)。
translated by 谷歌翻译
检测小物体是阻碍对象检测开发的主要障碍之一。通用对象检测器的性能在微小的对象检测任务上往往会大大恶化。在本文中,我们指出的是,基于锚的检测器中的先验盒或无锚检测器中的点是微小对象的优化。我们的主要观察结果是,当前基于锚的或无锚的标签分配范例将引起许多离群的微小地面真实样本,从而导致检测器对小物体的关注较少。为此,我们提出了一个基于高斯接受场的标签分配(RFLA)策略,以进行微小的对象检测。具体而言,RFLA首先利用了特征接受场遵循高斯分布的先前信息。然后,提出了一个新的接受场距离(RFD),而不是通过IOU或中心采样策略分配样品,以直接测量高斯接受场和地面真相之间的相似性。考虑到基于阈值的和中心的采样策略偏向大物体,我们进一步设计了基于RFD的层次标签分配(HLA)模块,以实现微小对象的平衡学习。四个数据集上的广泛实验证明了所提出的方法的有效性。尤其是,我们的方法在AI-TOD数据集上以4.0 AP点优于最先进的竞争对手。代码可从https://github.com/chasel-tsui/mmdet-rfla获得
translated by 谷歌翻译
随着深度卷积神经网络的兴起,对象检测在过去几年中取得了突出的进步。但是,这种繁荣无法掩盖小物体检测(SOD)的不令人满意的情况,这是计算机视觉中臭名昭著的挑战性任务之一,这是由于视觉外观不佳和由小目标的内在结构引起的嘈杂表示。此外,用于基准小对象检测方法基准测试的大规模数据集仍然是瓶颈。在本文中,我们首先对小物体检测进行了详尽的审查。然后,为了催化SOD的发展,我们分别构建了两个大规模的小物体检测数据集(SODA),SODA-D和SODA-A,分别集中在驾驶和空中场景上。 SODA-D包括24704个高质量的交通图像和277596个9个类别的实例。对于苏打水,我们收集2510个高分辨率航空图像,并在9个类别上注释800203实例。众所周知,拟议的数据集是有史以来首次尝试使用针对多类SOD量身定制的大量注释实例进行大规模基准测试。最后,我们评估主流方法在苏打水上的性能。我们预计发布的基准可以促进SOD的发展,并产生该领域的更多突破。数据集和代码将很快在:\ url {https://shaunyuan22.github.io/soda}上。
translated by 谷歌翻译
复杂的水下环境为物体检测带来了新的挑战,例如未平衡的光条件,低对比度,阻塞和水生生物的模仿。在这种情况下,水下相机捕获的物体将变得模糊,并且通用探测器通常会在这些模糊的物体上失败。这项工作旨在从两个角度解决问题:不确定性建模和艰难的例子采矿。我们提出了一个名为Boosting R-CNN的两阶段水下检测器,该检测器包括三个关键组件。首先,提出了一个名为RetinArpn的新区域建议网络,该网络提供了高质量的建议,并考虑了对象和IOU预测,以确定对象事先概率的不确定性。其次,引入了概率推理管道,以结合第一阶段的先验不确定性和第二阶段分类评分,以模拟最终检测分数。最后,我们提出了一种名为Boosting Reweighting的新的硬示例挖掘方法。具体而言,当区域提案网络误认为样品的对象的事先概率时,提高重新加权将在训练过程中增加R-CNN头部样品的分类损失,同时减少具有准确估计的先验的简易样品丢失。因此,可以在第二阶段获得强大的检测头。在推理阶段,R-CNN具有纠正第一阶段的误差以提高性能的能力。在两个水下数据集和两个通用对象检测数据集上进行的全面实验证明了我们方法的有效性和鲁棒性。
translated by 谷歌翻译
In object detection, the intersection over union (IoU) threshold is frequently used to define positives/negatives. The threshold used to train a detector defines its quality. While the commonly used threshold of 0.5 leads to noisy (low-quality) detections, detection performance frequently degrades for larger thresholds. This paradox of high-quality detection has two causes: 1) overfitting, due to vanishing positive samples for large thresholds, and 2) inference-time quality mismatch between detector and test hypotheses. A multi-stage object detection architecture, the Cascade R-CNN, composed of a sequence of detectors trained with increasing IoU thresholds, is proposed to address these problems. The detectors are trained sequentially, using the output of a detector as training set for the next. This resampling progressively improves hypotheses quality, guaranteeing a positive training set of equivalent size for all detectors and minimizing overfitting. The same cascade is applied at inference, to eliminate quality mismatches between hypotheses and detectors. An implementation of the Cascade R-CNN without bells or whistles achieves state-of-the-art performance on the COCO dataset, and significantly improves high-quality detection on generic and specific object detection datasets, including VOC, KITTI, CityPerson, and WiderFace. Finally, the Cascade R-CNN is generalized to instance segmentation, with nontrivial improvements over the Mask R-CNN. To facilitate future research, two implementations are made available at https://github.com/zhaoweicai/cascade-rcnn (Caffe) and https://github.com/zhaoweicai/Detectron-Cascade-RCNN (Detectron).
translated by 谷歌翻译
无锚的检测器基本上将对象检测作为密集的分类和回归。对于流行的无锚检测器,通常是引入单个预测分支来估计本地化的质量。当我们深入研究分类和质量估计的实践时,会观察到以下不一致之处。首先,对于某些分配了完全不同标签的相邻样品,训练有素的模型将产生相似的分类分数。这违反了训练目标并导致绩效退化。其次,发现检测到具有较高信心的边界框与相应的地面真相具有较小的重叠。准确的局部边界框将被非最大抑制(NMS)过程中的精确量抑制。为了解决不一致问题,提出了动态平滑标签分配(DSLA)方法。基于最初在FCO中开发的中心概念,提出了平稳的分配策略。在[0,1]中将标签平滑至连续值,以在正样品和负样品之间稳定过渡。联合(IOU)在训练过程中会动态预测,并与平滑标签结合。分配动态平滑标签以监督分类分支。在这样的监督下,质量估计分支自然合并为分类分支,这简化了无锚探测器的体系结构。全面的实验是在MS Coco基准上进行的。已经证明,DSLA可以通过减轻上述无锚固探测器的不一致来显着提高检测准确性。我们的代码在https://github.com/yonghaohe/dsla上发布。
translated by 谷歌翻译
在这项研究中,我们深入研究了半监督对象检测〜(SSOD)所面临的独特挑战。我们观察到当前的探测器通常遭受3个不一致问题。 1)分配不一致,传统的分配策略对标记噪声很敏感。 2)子任务不一致,其中分类和回归预测在同一特征点未对准。 3)时间不一致,伪Bbox在不同的训练步骤中差异很大。这些问题导致学生网络的优化目标不一致,从而恶化了性能并减慢模型收敛性。因此,我们提出了一个系统的解决方案,称为一致的老师,以补救上述挑战。首先,自适应锚分配代替了基于静态的策略,该策略使学生网络能够抵抗嘈杂的psudo bbox。然后,我们通过设计功能比对模块来校准子任务预测。最后,我们采用高斯混合模型(GMM)来动态调整伪盒阈值。一致的老师在各种SSOD评估上提供了新的强大基线。只有10%的带注释的MS-Coco数据,它可以使用Resnet-50骨干实现40.0 MAP,该数据仅使用伪标签,超过了4个地图。当对完全注释的MS-Coco进行其他未标记的数据进行培训时,性能将进一步增加到49.1 MAP。我们的代码将很快开源。
translated by 谷歌翻译
translated by 谷歌翻译
我们提出对象盒,这是一种新颖的单阶段锚定且高度可推广的对象检测方法。与现有的基于锚固的探测器和无锚的探测器相反,它们更偏向于其标签分配中的特定对象量表,我们仅将对象中心位置用作正样本,并在不同的特征级别中平均处理所有对象,而不论对象'尺寸或形状。具体而言,我们的标签分配策略将对象中心位置视为形状和尺寸不足的锚定,并以无锚固的方式锚定,并允许学习每个对象的所有尺度。为了支持这一点,我们将新的回归目标定义为从中心单元位置的两个角到边界框的四个侧面的距离。此外,为了处理比例变化的对象,我们提出了一个量身定制的损失来处理不同尺寸的盒子。结果,我们提出的对象检测器不需要在数据集中调整任何依赖数据集的超参数。我们在MS-Coco 2017和Pascal VOC 2012数据集上评估了我们的方法,并将我们的结果与最先进的方法进行比较。我们观察到,与先前的作品相比,对象盒的性能优惠。此外,我们执行严格的消融实验来评估我们方法的不同组成部分。我们的代码可在以下网址提供:https://github.com/mohsenzand/objectbox。
translated by 谷歌翻译
标签分配在现代对象检测模型中起着重要作用。检测模型可能会通过不同的标签分配策略产生完全不同的性能。对于基于锚的检测模型,锚点及其相应的地面真实边界框之间的IO(与联合的交点)是关键要素,因为正面样品和负样品除以IOU阈值。早期对象探测器仅利用所有训练样本的固定阈值,而最近的检测算法则基于基于IOUS到地面真相框的分布而着重于自适应阈值。在本文中,我们介绍了一种简单的同时有效的方法,可以根据预测的培训状态动态执行标签分配。通过在标签分配中引入预测,选择了更高的地面真相对象的高质量样本作为正样本,这可以减少分类得分和IOU分数之间的差异,并生成更高质量的边界框。我们的方法显示了使用自适应标签分配算法和这些正面样本的下限框损失的检测模型的性能的改进,这表明将更多具有较高质量预测盒的样品选择为阳性。
translated by 谷歌翻译
Though tremendous strides have been made in uncontrolled face detection, accurate and efficient 2D face alignment and 3D face reconstruction in-the-wild remain an open challenge. In this paper, we present a novel singleshot, multi-level face localisation method, named Reti-naFace, which unifies face box prediction, 2D facial landmark localisation and 3D vertices regression under one common target: point regression on the image plane. To fill the data gap, we manually annotated five facial landmarks on the WIDER FACE dataset and employed a semiautomatic annotation pipeline to generate 3D vertices for face images from the WIDER FACE, AFLW and FDDB datasets. Based on extra annotations, we propose a mutually beneficial regression target for 3D face reconstruction, that is predicting 3D vertices projected on the image plane constrained by a common 3D topology. The proposed 3D face reconstruction branch can be easily incorporated, without any optimisation difficulty, in parallel with the existing box and 2D landmark regression branches during joint training. Extensive experimental results show that Reti-naFace can simultaneously achieve stable face detection, accurate 2D face alignment and robust 3D face reconstruction while being efficient through single-shot inference.
translated by 谷歌翻译
Single-frame InfraRed Small Target (SIRST) detection has been a challenging task due to a lack of inherent characteristics, imprecise bounding box regression, a scarcity of real-world datasets, and sensitive localization evaluation. In this paper, we propose a comprehensive solution to these challenges. First, we find that the existing anchor-free label assignment method is prone to mislabeling small targets as background, leading to their omission by detectors. To overcome this issue, we propose an all-scale pseudo-box-based label assignment scheme that relaxes the constraints on scale and decouples the spatial assignment from the size of the ground-truth target. Second, motivated by the structured prior of feature pyramids, we introduce the one-stage cascade refinement network (OSCAR), which uses the high-level head as soft proposals for the low-level refinement head. This allows OSCAR to process the same target in a cascade coarse-to-fine manner. Finally, we present a new research benchmark for infrared small target detection, consisting of the SIRST-V2 dataset of real-world, high-resolution single-frame targets, the normalized contrast evaluation metric, and the DeepInfrared toolkit for detection. We conduct extensive ablation studies to evaluate the components of OSCAR and compare its performance to state-of-the-art model-driven and data-driven methods on the SIRST-V2 benchmark. Our results demonstrate that a top-down cascade refinement framework can improve the accuracy of infrared small target detection without sacrificing efficiency. The DeepInfrared toolkit, dataset, and trained models are available at https://github.com/YimianDai/open-deepinfrared to advance further research in this field.
translated by 谷歌翻译