Recently, density map regression-based methods have dominated in crowd counting owing to their excellent fitting ability on density distribution. However, further improvement tends to saturate mainly because of the confusing background noise and the large density variation. In this paper, we propose a Hierarchically Decoupled Network (HDNet) to solve the above two problems within a unified framework. Specifically, a background classification sub-task is decomposed from the density map prediction task, which is then assigned to a Density Decoupling Module (DDM) to exploit its highly discriminative ability. For the remaining foreground prediction sub-task, it is further hierarchically decomposed to several density-specific sub-tasks by the DDM, which are then solved by the regression-based experts in a Foreground Density Estimation Module (FDEM). Although the proposed strategy effectively reduces the hypothesis space so as to relieve the optimization for those task-specific experts, the high correlation of these sub-tasks are ignored. Therefore, we introduce three types of interaction strategies to unify the whole framework, which are Feature Interaction, Gradient Interaction, and Scale Interaction. Integrated with the above spirits, HDNet achieves state-of-the-art performance on several popular counting benchmarks.
translated by 谷歌翻译
近年来,人群计数研究取得了重大进展。然而,随着人群中存在具有挑战性的规模变化和复杂的场景,传统的卷积网络和最近具有固定大小的变压器架构都不能良好地处理任务。为了解决这个问题,本文提出了一个场景 - 自适应关注网络,称为Saanet。首先,我们设计了可变形的变压器骨干内的可变形关注,从而了解具有可变形采样位置和动态注意力的自适应特征表示。然后,我们提出了多级特征融合和计数专注特征增强模块,以加强全局图像上下文下的特征表示。学习的陈述可以参加前景,并适应不同的人群。我们对四个具有挑战性的人群计数基准进行广泛的实验,表明我们的方法实现了最先进的性能。特别是,我们的方法目前在NWPU-Crowd基准的公共排行榜上排名第一。我们希望我们的方法可能是一个强大的基线,以支持人群计数的未来研究。源代码将被释放到社区。
translated by 谷歌翻译
背景噪声和规模变化是人群计数中长期以来已经认识到的常见问题。人类瞥见人群的形象,立即知道人类的大概数量,以及他们通过关注的人群地区和人群地区的拥塞程度,并具有全球接收领域。因此,在本文中,我们通过对人类自上而下的视觉感知机制进行建模,提出了一个具有称为RANET的区域感知块的新型反馈网络。首先,我们介绍了一个反馈体系结构,以生成优先级地图,这些图提供了输入图像中候选人人群区域的先验。先验使Ranet更加关注人群地区。然后,我们设计了可以通过全局接受字段自适应地将上下文信息编码为输入图像的区域感知块。更具体地说,我们以列向量的形式扫描整个输入图像及其优先级图,以获得相关矩阵估计其相似性。获得的相关矩阵将用于建立像素之间的全球关系。我们的方法在几个公共数据集上优于最先进的人群计数方法。
translated by 谷歌翻译
在实际人群计算应用程序中,图像中的人群密度差异很大。当面对密度变化时,人类倾向于在低密度区域定位和计数目标,并推理高密度区域的数量。我们观察到,CNN使用固定大小的卷积内核专注于局部信息相关性,而变压器可以通过使用全球自我注意机制有效地提取语义人群信息。因此,CNN可以在低密度区域中准确定位和估计人群,而在高密度区域中很难正确感知密度。相反,变压器在高密度区域具有很高的可靠性,但未能在稀疏区域定位目标。 CNN或变压器都无法很好地处理这种密度变化。为了解决此问题,我们提出了一个CNN和变压器自适应选择网络(CTASNET),该网络可以自适应地为不同密度区域选择适当的计数分支。首先,CTASNET生成CNN和变压器的预测结果。然后,考虑到CNN/变压器适用于低/高密度区域,密度引导的自适应选择模块被设计为自动结合CNN和Transformer的预测。此外,为了减少注释噪声的影响,我们引入了基于Correntropy的最佳运输损失。对四个挑战的人群计数数据集进行了广泛的实验,已经验证了该方法。
translated by 谷歌翻译
指导可学习的参数优化的一种吸引人的方法,例如特征图,是全球关注,它以成本的一小部分启发了网络智能。但是,它的损失计算过程仍然很短:1)我们只能产生一维的“伪标签”,因为该过程中涉及的人工阈值不健壮; 2)等待损失计算的注意力必然是高维的,而通过卷积减少它将不可避免地引入其他可学习的参数,从而使损失的来源混淆。为此,我们设计了一个基于软磁性注意的简单但有效的间接注意力优化(IIAO)模块,该模块将高维注意图转换为数学意义上的一维功能图,以通过网络中途进行损失计算,同时自动提供自适应多尺度融合以配备金字塔模块。特殊转化产生相对粗糙的特征,最初,区域的预测性谬误性随着人群的密度分布而变化,因此我们定制区域相关损失(RCLOSS)以检索连续错误的错误区域和平滑的空间信息。广泛的实验证明,我们的方法在许多基准数据集中超过了先前的SOTA方法。
translated by 谷歌翻译
We develop a Synthetic Fusion Pyramid Network (SPF-Net) with a scale-aware loss function design for accurate crowd counting. Existing crowd-counting methods assume that the training annotation points were accurate and thus ignore the fact that noisy annotations can lead to large model-learning bias and counting error, especially for counting highly dense crowds that appear far away. To the best of our knowledge, this work is the first to properly handle such noise at multiple scales in end-to-end loss design and thus push the crowd counting state-of-the-art. We model the noise of crowd annotation points as a Gaussian and derive the crowd probability density map from the input image. We then approximate the joint distribution of crowd density maps with the full covariance of multiple scales and derive a low-rank approximation for tractability and efficient implementation. The derived scale-aware loss function is used to train the SPF-Net. We show that it outperforms various loss functions on four public datasets: UCF-QNRF, UCF CC 50, NWPU and ShanghaiTech A-B datasets. The proposed SPF-Net can accurately predict the locations of people in the crowd, despite training on noisy training annotations.
translated by 谷歌翻译
透视扭曲和人群的变化使人群在计算机视觉中计算一项具有挑战性的任务。为了解决这个问题,许多以前的作品都使用了深神经网络(DNNS)中的多尺度体系结构。多尺度分支可以直接合并(例如,通过串联)合并,也可以通过DNNS中代理(例如注意力)的指导合并。尽管存在盛行,但这些组合方法的复杂性不足以应对多尺度密度图上的每个像素性能差异。在这项工作中,我们通过引入密度专家的​​层次混合物来重新设计多尺度神经网络,该密度专家的​​分层混合物层次合并了多尺度密度图以进行人群计数。在层次结构中,提出了一项专家竞争和协作计划,以鼓励各种规模的贡献;引入了像素的软门网,以提供像素的软重量,以用于不同层次结构的比例组合。使用人群密度图和本地计数图对网络进行了优化,该图是通过前者对本地集成获得的。优化两者的潜在冲突可能是有问题的。我们基于图像中硬预测的本地区域之间的相对计数差异引入了新的相对局部计数损失,事实证明,这是与密度图上常规的绝对误差损失相辅相成的。实验表明,我们的方法在五个公共数据集上实现了最先进的性能,即上海,ucf_cc_50,jhu-crowd ++,nwpu-crowd和trancos。
translated by 谷歌翻译
RGB-Thermal(RGB-T)人群计数是一项具有挑战性的任务,它将热图像用作与RGB图像的互补信息,以应对低弹片或类似背景的场景中单峰基于RGB的方法的降低。大多数现有方法提出了精心设计的结构,用于RGB-T人群计数中的跨模式融合。但是,这些方法在编码RGB-T图像对中编码跨模式上下文语义信息方面存在困难。考虑到上述问题,我们提出了一个称为多发意见融合网络(MAFNET)的两流RGB-T人群计数网络,该网络旨在根据注意机制完全捕获RGB和热模式中的远距离上下文信息。具体而言,在编码器部分中,多发融合(MAF)模块嵌入到全球级别的两个特定于模态分支的不同阶段中。此外,引入了多模式多尺度聚合(MMA)回归头,以充分利用跨模态的多尺度和上下文信息,以生成高质量的人群密度图。在两个受欢迎的数据集上进行的广泛实验表明,拟议的MAFNET对RGB-T人群计数有效,并实现了最新的性能。
translated by 谷歌翻译
本文侧重于改善基于人群计数的最近的即插即用补丁重新分校模块(PRM)方法。为了充分利用PRM潜力,并获得更具可靠和准确的结果,以满足人群变异,大的视角,极端闭塞和杂乱的背景区域,我们提出了一种基于PRM的多分辨率和多任务人群通过利用更多有效性和效力来计算网络来计算网络。所提出的模型由三个深层分支组成,每个分支都会生成不同分辨率的特征图。这些分支机构互相执行特征级融合,以构建用于最终人群估计的重要集体知识。此外,早期的特征图会经受视觉注意力,以加强对前景地区的后期频道的理解。与PRM模块的这些深度分支的整合和早期的块通过四个基准数据集上的广泛数值和视觉评估而比原始的PRM基础级更有效。拟议的方法在RMSE评估标准方面产生了12.6%的余量。它还优于跨数据集评估中的最先进的方法。
translated by 谷歌翻译
在过去的几年中,基于卷积的神经网络(CNN)的人群计数方法已取得了有希望的结果。但是,对于准确的计数估计,量表变化问题仍然是一个巨大的挑战。在本文中,我们提出了一个多尺度特征聚合网络(MSFANET),可以在某种程度上减轻此问题。具体而言,我们的方法由两个特征聚合模块组成:短聚合(Shortagg)和Skip Contregation(Skipagg)。 Shortagg模块聚集了相邻卷积块的特征。其目的是制作具有从网络底部逐渐融合的不同接收场的功能。 Skipagg模块将具有小型接受场的特征直接传播到具有更大接收场的特征。它的目的是促进特征与大小接收场的融合。尤其是,Skipagg模块引入了Swin Transformer块中的本地自我注意力特征,以结合丰富的空间信息。此外,我们通过考虑不均匀的人群分布来提出基于局部和全球的计数损失。在四个具有挑战性的数据集(Shanghaitech数据集,UCF_CC_50数据集,UCF-QNRF数据集,WorldExpo'10数据集)上进行了广泛的实验,这表明与先前的先前的尚未实行的方法相比,提出的易于实现的MSFANET可以实现有希望的结果。
translated by 谷歌翻译
We propose a network for Congested Scene Recognition called CSRNet to provide a data-driven and deep learning method that can understand highly congested scenes and perform accurate count estimation as well as present highquality density maps. The proposed CSRNet is composed of two major components: a convolutional neural network (CNN) as the front-end for 2D feature extraction and a dilated CNN for the back-end, which uses dilated kernels to deliver larger reception fields and to replace pooling operations. CSRNet is an easy-trained model because of its pure convolutional structure. We demonstrate CSRNet on four datasets (ShanghaiTech dataset, the UCF CC 50 dataset, the WorldEXPO'10 dataset, and the UCSD dataset) and we deliver the state-of-the-art performance. In the Shang-haiTech Part B dataset, CSRNet achieves 47.3% lower Mean Absolute Error (MAE) than the previous state-of-theart method. We extend the targeted applications for counting other objects, such as the vehicle in TRANCOS dataset. Results show that CSRNet significantly improves the output quality with 15.4% lower MAE than the previous state-ofthe-art approach.
translated by 谷歌翻译
人群计数是公共场所情境意识的有效工具。使用图像和视频进行自动人群计数是一个有趣但充满挑战的问题,在计算机视觉中引起了极大的关注。在过去的几年中,已经开发了各种深度学习方法来实现最先进的表现。随着时间的流逝,这些方法在许多方面发生了变化,例如模型架构,输入管道,学习范式,计算复杂性和准确性提高等。在本文中,我们对人群计数领域中最重要的贡献进行了系统和全面的评论。 。尽管对该主题的调查很少,但我们的调查是最新的,并且在几个方面都不同。首先,它通过模型体系结构,学习方法(即损失功能)和评估方法(即评估指标)对最重要的贡献进行了更有意义的分类。我们选择了杰出和独特的作品,并排除了类似的作品。我们还通过基准数据集对著名人群计数模型进行分类。我们认为,这项调查可能是新手研究人员了解随着时间的推移和当前最新技术的逐步发展和贡献的好资源。
translated by 谷歌翻译
人群计数旨在了解人群密度分布并估计图像中对象(例如人)的数量。观点效应显着影响数据点的分布,在人群计数中起着重要作用。在本文中,我们提出了一种新颖的视角方法,称为Panet,以解决观点问题。基于观察到,由于透视效果,对象的大小在一个图像中变化很大,我们提出了动态接收场(DRF)框架。该框架能够根据输入图像通过扩张的卷积参数来调整接收场,这有助于该模型为每个局部区域提取更具区别的特征。与以前的大多数使用高斯内核来生成密度图作为监督信息的作品不同,我们提出了自我缩减监督(SDS)培训方法。从第一个训练阶段完善了地面图密度图,并在第二阶段将视角信息提炼为模型。 shanghaitech part_a和part_b,ucf_qnrf和ucf_cc_50数据集的实验结果表明,我们的拟议锅et的表现优于最先进的方法。
translated by 谷歌翻译
在本文中,我们提出了一种新的机构指导的半监督计数方法。首先,我们建立了一个可学习的辅助结构,即密度代理,将公认的前景区域特征带到相应的密度子类(代理)和推开背景的区域。其次,我们提出了密度引导的对比度学习损失,以巩固主链特征提取器。第三,我们通过使用变压器结构进一步完善前景特征来构建回归头。最后,提供了有效的噪声抑郁丧失,以最大程度地减少注释噪声的负面影响。对四个挑战性人群计数数据集进行的广泛实验表明,我们的方法在很大的边距中实现了与最先进的半监督计数方法相比最先进的性能。代码可用。
translated by 谷歌翻译
单图像人群计数是一个充满挑战的计算机视觉问题,在公共安全,城市规划,交通管理等方面进行了广泛的应用。随着深度学习技术的最新发展,近年来,人群的数量引起了很多关注并取得了巨大的成功。这项调查是为了通过系统审查和总结该地区的200多件作品来提供有关基于深度学习的人群计数技术的最新进展的全面摘要。我们的目标是提供最新的评论。在最近的方法中,并在该领域教育新研究人员的设计原理和权衡。在介绍了公开可用的数据集和评估指标之后,我们通过对三个主要的设计模块进行了详细比较来回顾最近的进展:深度神经网络设计,损失功能和监督信号。我们使用公共数据集和评估指标研究和比较方法。我们以一些未来的指示结束了调查。
translated by 谷歌翻译
The counting task, which plays a fundamental rule in numerous applications (e.g., crowd counting, traffic statistics), aims to predict the number of objects with various densities. Existing object counting tasks are designed for a single object class. However, it is inevitable to encounter newly coming data with new classes in our real world. We name this scenario as \textit{evolving object counting}. In this paper, we build the first evolving object counting dataset and propose a unified object counting network as the first attempt to address this task. The proposed model consists of two key components: a class-agnostic mask module and a class-increment module. The class-agnostic mask module learns generic object occupation prior via predicting a class-agnostic binary mask (e.g., 1 denotes there exists an object at the considering position in an image and 0 otherwise). The class-increment module is used to handle new coming classes and provides discriminative class guidance for density map prediction. The combined outputs of class-agnostic mask module and image feature extractor are used to predict the final density map. When new classes come, we first add new neural nodes into the last regression and classification layers of this module. Then, instead of retraining the model from scratch, we utilize knowledge distilling to help the model remember what have already learned about previous object classes. We also employ a support sample bank to store a small number of typical training samples of each class, which are used to prevent the model from forgetting key information of old data. With this design, our model can efficiently and effectively adapt to new coming classes while keeping good performance on already seen data without large-scale retraining. Extensive experiments on the collected dataset demonstrate the favorable performance.
translated by 谷歌翻译
Crowd localization aims to predict the spatial position of humans in a crowd scenario. We observe that the performance of existing methods is challenged from two aspects: (i) ranking inconsistency between test and training phases; and (ii) fixed anchor resolution may underfit or overfit crowd densities of local regions. To address these problems, we design a supervision target reassignment strategy for training to reduce ranking inconsistency and propose an anchor pyramid scheme to adaptively determine the anchor density in each image region. Extensive experimental results on three widely adopted datasets (ShanghaiTech A\&B, JHU-CROWD++, UCF-QNRF) demonstrate the favorable performance against several state-of-the-art methods.
translated by 谷歌翻译
大多数传统人群计数方法利用完全监督的学习框架来学习场景图像和人群密度映射之间的映射。在这种完全监督培训设置的情况下,需要大量昂贵且耗时的像素级注释,以产生密度图作为监控。减少昂贵标签的一种方法是利用未标记图像之间的自我结构信息和内在关系。与利用原始图像级别的这些关系和结构信息的先前方法不同,我们从潜在特征空间探讨了这种自我关系,因为它可以提取更丰富的关系和结构信息。具体而言,我们提出了S $ ^ 2 $ FPR,其可以提取结构信息,并在潜在空间中学习粗良好的金字塔特征的部分订单,以便更好地与大规模未标记的图像计数。此外,我们收集了一个新的未标记的人群计数数据集(Fudan-UCC),总共有4,000张图片进行培训。一个副产物是我们提出的S $ ^ 2 $ FPR方法可以利用未标记图像之间的潜在空间中的众多部分订单来加强模型表示能力,并减少人群计数任务的估计误差。关于四个基准数据集的大量实验,即UCF-QNRF,Shanghaitech Parta和Partb以及UCF-CC-50,与先前半监督方法相比,我们的方法显示了我们的方法。源代码和数据集可用于https://github.com/bridgeqiqi/s2fpr。
translated by 谷歌翻译
玻璃在现实世界中非常普遍。受玻璃区域的不确定性以及玻璃背后的各种复杂场景的影响,玻璃的存在对许多计算机视觉任务构成了严重的挑战,从而使玻璃分割成为重要的计算机视觉任务。玻璃没有自己的视觉外观,而只能传输/反映其周围环境的外观,从而与其他常见对象根本不同。为了解决此类具有挑战性的任务,现有方法通常会探索并结合深网络中不同特征级别的有用线索。由于存在级别不同的特征之间的特征差距,即,深层特征嵌入了更多高级语义,并且更好地定位目标对象,而浅层特征具有更大的空间尺寸,并保持更丰富,更详细的低级信息,因此,将这些特征融合到天真的融合将导致亚最佳溶液。在本文中,我们将有效的特征融合到两个步骤中,以朝着精确的玻璃分割。首先,我们试图通过开发可区分性增强(DE)模块来弥合不同级别特征之间的特征差距,该模块使特定于级别的特征成为更具歧视性的表示,从而减轻了融合不兼容的特征。其次,我们设计了一个基于焦点和探索的融合(FEBF)模块,以通过突出显示常见并探索级别差异特征之间的差异,从而在融合过程中丰富挖掘有用的信息。
translated by 谷歌翻译
视频人群本地化是一项至关重要但又具有挑战性的任务,旨在估算给定拥挤视频中人头的确切位置。为了模拟人类活动性的时空依赖性,我们提出了多焦点高斯邻里注意力(GNA),可以有效利用远程对应关系,同时保持输入视频的空间拓扑结构。特别是,我们的GNA还可以使用配备的多聚焦机制良好地捕获人头的尺度变化。基于多聚焦GNA,我们开发了一个名为GNANET的统一神经网络,以通过场景建模模块和上下文交叉意见模块充分聚合时空信息来准确地定位视频片段中的头部中心。此外,为了促进该领域的未来研究,我们介绍了一个名为VScrowd的大规模人群视频基准,该视频由60k+框架组成,这些框架在各种监视场景和2M+头部注释中捕获。最后,我们在包括我们的SenseCrowd在内的三个数据集上进行了广泛的实验,实验结果表明,所提出的方法能够实现视频人群本地化和计数的最新性能。
translated by 谷歌翻译