While class activation map (CAM) generated by image classification network has been widely used for weakly supervised object localization (WSOL) and semantic segmentation (WSSS), such classifiers usually focus on discriminative object regions. In this paper, we propose Contrastive learning for Class-agnostic Activation Map (C$^2$AM) generation only using unlabeled image data, without the involvement of image-level supervision. The core idea comes from the observation that i) semantic information of foreground objects usually differs from their backgrounds; ii) foreground objects with similar appearance or background with similar color/texture have similar representations in the feature space. We form the positive and negative pairs based on the above relations and force the network to disentangle foreground and background with a class-agnostic activation map using a novel contrastive loss. As the network is guided to discriminate cross-image foreground-background, the class-agnostic activation maps learned by our approach generate more complete object regions. We successfully extracted from C$^2$AM class-agnostic object bounding boxes for object localization and background cues to refine CAM generated by classification network for semantic segmentation. Extensive experiments on CUB-200-2011, ImageNet-1K, and PASCAL VOC2012 datasets show that both WSOL and WSSS can benefit from the proposed C$^2$AM.
translated by 谷歌翻译
弱监督对象本地化(WSOL)旨在仅使用图像级标签作为监控本地化对象区域。最近,通过生成前景预测映射(FPM)来实现新的范例来实现本地化任务。现有的基于FPM的方法使用跨熵(CE)来评估前景预测映射并引导发电机的学习。我们争辩使用激活值来实现更高效的学习。它基于实验观察,对于培训的网络,CE当前景掩模仅覆盖物体区域的一部分时,CE会聚到零。虽然激活值增加,直到掩码扩展到对象边界,这表明可以通过使用激活值来学习更多对象区域。在本文中,我们提出了背景激活抑制(BAS)方法。具体地,设计激活地图约束模块(AMC)以通过抑制背景激活值来促进生成器的学习。同时,通过使用前景区域指导和区域约束,BAS可以学习对象的整个区域。此外,在推理阶段,我们考虑不同类别的预测映射,以获得最终的本地化结果。广泛的实验表明,BAS通过CUB-200-2011和ILSVRC数据集的基线方法实现了显着和一致的改进。
translated by 谷歌翻译
通过使用图像级分类掩模监督其学习过程,弱监督对象本地化(WSOL)放宽对对象本地化的密度注释的要求。然而,当前的WSOL方法遭受背景位置的过度激活,并且需要后处理以获得定位掩模。本文将这些问题归因于背景提示的不明显,并提出了背景感知分类激活映射(B-CAM),以便仅使用图像级标签同时学习对象和背景的本地化分数。在我们的B-CAM中,两个图像级功能,由潜在背景和对象位置的像素级别功能聚合,用于从对象相关的背景中净化对象功能,并表示纯背景样本的功能,分别。然后基于这两个特征,学习对象分类器和背景分类器,以确定二进制对象本地化掩码。我们的B-CAM可以基于提出的错开分类损失以端到端的方式培训,这不仅可以改善对象本地化,而且还抑制了背景激活。实验表明,我们的B-CAM在Cub-200,OpenImages和VOC2012数据集上优于一级WSOL方法。
translated by 谷歌翻译
经过图像级标签训练的弱监督图像分割通常在伪地面上的生成期间因物体区域的覆盖率不准确。这是因为对象激活图受到分类目标的训练,并且缺乏概括的能力。为了提高客观激活图的一般性,我们提出了一个区域原型网络RPNET来探索训练集的跨图像对象多样性。通过区域特征比较确定了跨图像的相似对象零件。区域之间传播对象信心,以发现新的对象区域,同时抑制了背景区域。实验表明,该提出的方法会生成更完整和准确的伪对象掩模,同时在Pascal VOC 2012和MS Coco上实现最先进的性能。此外,我们研究了提出的方法在减少训练集方面的鲁棒性。
translated by 谷歌翻译
弱监督对象本地化(WSOL)是一个具有挑战性的任务,可以仅通过类别标签本地化对象。然而,分类和定位之间存在矛盾,因为准确的分类网络倾向于注意物体的歧视区域而不是整体。我们提出这种歧视是由基于CAM的方法选择的手工阈值引起的。因此,我们提出了具有视觉变压器(VIV)骨干的令牌(CAFT)的聚类和过滤器,以以另一种方式解决这个问题。 CAFT首先将图像的修补程序令牌拆分为VIT和群集输出令牌以生成对象的初始掩码。其次,CAFT将初始掩码视为伪标签,以训练骨干后骨干的浅卷积头(注意滤波器,atf)直接从令牌中提取掩码。然后,CAFT将图像分成零件,分别输出掩码并将它们合并到一个精制的掩模中。最后,新的ATF培训在精制的掩模上,并用于预测对象的框。实验验证CAFT优于上一个工作,并分别在CUB-200和Imagenet-1K上与地面真理类实现97.55 \%和69.86 \%。 CAFT提供了一种思考WSOL任务的新方法。
translated by 谷歌翻译
弱监督语义分段(WSSS)的现有研究已经利用了类激活映射(CAM)来本地化类对象。然而,由于分类损失不足以提供精确的物区域,因此凸轮倾向于偏向辨别模式(即,稀疏),并且不提供精确的对象边界信息(即,不确定)。为了解决这些限制,我们提出了一种新颖的框架(由MainNet和SupportNet组成),从给定的图像级监督导出像素级自我监督。在我们的框架中,借助拟议的区域对比模块(RCM)和多尺寸细分模块(MAM),MainNet由来自SupportNet的自我监督训练。 RCM从SupportNet中提取两种形式的自我监督:(1)从凸轮和(2)根据类区域掩码的特征获得的(2)类的类别区域掩模。然后,主目的的每个像素明智的特征被原型训练以对比的方式,锐化所产生的凸轮。 MAM利用从SupportNet的多个尺度推断的凸轮作为自我监控来指导MailNet。基于Mainnet和SupportNet的多尺度凸轮之间的不相似性,来自主目的的凸轮训练以扩展到较少辨别的区域。该方法在Pascal VOC 2012数据集上显示了在列车和验证集上的最先进的WSSS性能。为了再现性,代码将很快公开提供。
translated by 谷歌翻译
仅使用图像级标签的弱监督语义细分旨在降低分割任务的注释成本。现有方法通常利用类激活图(CAM)来定位伪标签生成的对象区域。但是,凸轮只能发现对象的最歧视部分,从而导致下像素级伪标签。为了解决这个问题,我们提出了一个限制的显着性和内类关系的显着性(I $^2 $ CRC)框架,以协助CAM中激活的对象区域的扩展。具体而言,我们提出了一个显着性指导的类不足的距离模块,以通过将特征对准其类原型来更接近类别内特征。此外,我们提出了一个特定的距离模块,以将类间特征推开,并鼓励对象区域的激活高于背景。除了加强分类网络激活CAM中更多积分对象区域的能力外,我们还引入了一个对象引导的标签细化模块,以完全利用分割预测和初始标签,以获取出色的伪标签。 Pascal VOC 2012和可可数据集的广泛实验很好地证明了I $^2 $ CRC的有效性,而不是其他最先进的对应物。源代码,模型和数据已在\ url {https://github.com/nust-machine-intelligence-laboratory/i2crc}提供。
translated by 谷歌翻译
基于弱监管的像素 - 明显的密集预测任务当前使用类注意映射(CAM)以产生伪掩模作为地面真理。然而,现有方法通常取决于诱人的训练模块,这可能会引入磨削计算开销和复杂的培训程序。在这项工作中,提出了语义结构知识推断(SSA)来探索隐藏在基于CNN的网络的不同阶段的语义结构信息,以在模型推断中产生高质量凸轮。具体地,首先提出语义结构建模模块(SSM)来生成类别不可知语义相关表示,其中每个项目表示一个类别对象和所有其他类别之间的亲和程度。然后,探索结构化特征表示通过点产品操作来抛光不成熟的凸轮。最后,来自不同骨架级的抛光凸轮融合为输出。所提出的方法具有没有参数的优点,不需要培训。因此,它可以应用于广泛的弱监管像素 - 明智的密集预测任务。对弱势监督对象本地化和弱监督语义分割任务的实验结果证明了该方法的效力,这使得新的最先进的结果实现了这两项任务。
translated by 谷歌翻译
大多数现有的语义分割方法都以图像级类标签作为监督,高度依赖于从标准分类网络生成的初始类激活图(CAM)。在本文中,提出了一种新颖的“渐进贴片学习”方法,以改善分类的局部细节提取,从而更好地覆盖整个对象的凸轮,而不仅仅是在常规分类模型中获得的CAM中的最歧视区域。 “补丁学习”将特征映射破坏成贴片,并在最终聚合之前并行独立处理每个本地贴片。这样的机制强迫网络从分散的歧视性本地部分中找到弱信息,从而提高了本地细节的敏感性。 “渐进的补丁学习”进一步将特征破坏和补丁学习扩展到多层粒度。与多阶段优化策略合作,这种“渐进的补丁学习”机制隐式地为模型提供了跨不同位置粒状性的特征提取能力。作为隐式多粒性渐进式融合方法的替代方案,我们还提出了一种明确的方法,以同时将单个模型中不同粒度的特征融合,从而进一步增强了完整对象覆盖的凸轮质量。我们提出的方法在Pascal VOC 2012数据集上取得了出色的性能,例如,测试集中有69.6 $%miou),它超过了大多数现有的弱监督语义细分方法。代码将在此处公开提供,https://github.com/tyroneli/ppl_wsss。
translated by 谷歌翻译
深度学习的快速发展在分割方面取得了长足的进步,这是计算机视觉的基本任务之一。但是,当前的细分算法主要取决于像素级注释的可用性,这些注释通常昂贵,乏味且费力。为了减轻这一负担,过去几年见证了越来越多的关注,以建立标签高效,深度学习的细分算法。本文对标签有效的细分方法进行了全面的审查。为此,我们首先根据不同类型的弱标签提供的监督(包括没有监督,粗略监督,不完整的监督和嘈杂的监督和嘈杂的监督),首先开发出一种分类法来组织这些方法,并通过细分类型(包括语义细分)补充,实例分割和全景分割)。接下来,我们从统一的角度总结了现有的标签有效的细分方法,该方法讨论了一个重要的问题:如何弥合弱监督和密集预测之间的差距 - 当前的方法主要基于启发式先导,例如交叉像素相似性,跨标签约束,跨视图一致性,跨图像关系等。最后,我们分享了对标签有效深层细分的未来研究方向的看法。
translated by 谷歌翻译
虽然图像级弱监督的语义分割(WSSS)与类激活地图(CAM)作为基石取得了很大的进展,但分类和分割之间的大型监督差距仍然妨碍模型以产生用于分割的更完整和精确的伪掩模。在这项研究中,我们提出了弱监管的像素到原型对比度,其可以提供像素级监控信号来缩小间隙。由两个直观的前沿引导,我们的方法在不同视图和图像的单个视图中执行,旨在施加跨视图特征语义一致性正则化,并促进特征空间的帧内(互联)紧凑性(色散)。我们的方法可以无缝地纳入现有的WSSS模型,而没有对基础网络的任何更改,并且不会产生任何额外的推断负担。广泛的实验表明,我们的方法始终如一地通过大幅度改善两个强的基线,证明了有效性。具体而言,建于接缝的顶部,我们将初始种子Miou 2012从55.4%提高到Pascal VOC上。此外,通过我们的方法武装,我们从70.8%增加到73.6%的EPS分割Miou,实现了新的最先进。
translated by 谷歌翻译
生成精确的类感知的伪基真实,也就是类激活图(CAM),对于弱监督的语义分割至关重要。原始CAM方法通常会产生不完整和不准确的定位图。为了解决这个问题,本文提出了基于可变形卷积中的偏移学习的扩展和收缩方案,以依次改善两个各个阶段中定位对象的回忆和精度。在扩展阶段,在可变形卷积层中的偏移学习分支,称为“扩展采样器”,寻求采样越来越小的判别对象区域,这是由逆监督信号驱动的,从而最大程度地提高了图像级分类损失。然后在收缩阶段逐渐将位置更完整的物体逐渐缩小到最终对象区域。在收缩阶段,引入了另一个可变形卷积层的偏移学习分支,称为“收缩采样器”,以排除在扩展阶段参加的假积极背景区域,以提高定位图的精度。我们在Pascal VOC 2012和MS Coco 2014上进行了各种实验,以很好地证明了我们方法比其他最先进的方法对弱监督语义分割的优越性。代码将在此处公开提供,https://github.com/tyroneli/esol_wsss。
translated by 谷歌翻译
Weakly supervised semantic segmentation (WSSS) with image-level labels is a challenging task in computer vision. Mainstream approaches follow a multi-stage framework and suffer from high training costs. In this paper, we explore the potential of Contrastive Language-Image Pre-training models (CLIP) to localize different categories with only image-level labels and without any further training. To efficiently generate high-quality segmentation masks from CLIP, we propose a novel framework called CLIP-ES for WSSS. Our framework improves all three stages of WSSS with special designs for CLIP: 1) We introduce the softmax function into GradCAM and exploit the zero-shot ability of CLIP to suppress the confusion caused by non-target classes and backgrounds. Meanwhile, to take full advantage of CLIP, we re-explore text inputs under the WSSS setting and customize two text-driven strategies: sharpness-based prompt selection and synonym fusion. 2) To simplify the stage of CAM refinement, we propose a real-time class-aware attention-based affinity (CAA) module based on the inherent multi-head self-attention (MHSA) in CLIP-ViTs. 3) When training the final segmentation model with the masks generated by CLIP, we introduced a confidence-guided loss (CGL) to mitigate noise and focus on confident regions. Our proposed framework dramatically reduces the cost of training for WSSS and shows the capability of localizing objects in CLIP. Our CLIP-ES achieves SOTA performance on Pascal VOC 2012 and MS COCO 2014 while only taking 10% time of previous methods for the pseudo mask generation. Code is available at https://github.com/linyq2117/CLIP-ES.
translated by 谷歌翻译
在弱监督的本地化设置中,监督作为图像级标签。我们建议使用图像分类器$ F $,并培训发电网络$ G $,给定输入图像,指示图像内对象位置的每个像素权重映射。通过最大限度地减少原始图像上的分类器F $ F $的输出之间的差异来培训网络$ G $培训。该方案需要一个正常化术语,确保$ G $不提供统一的重量,以及提前停止标准,以防止超过段图像。我们的结果表明,该方法在充满挑战的细粒度分类数据集中的相当余量以及通用图像识别数据集中优于现有的本地化方法。另外,在细粒度分类数据集中的弱监督分割中,所获得的权重映射也是最新的。
translated by 谷歌翻译
弱监督的语义细分(WSSS)旨在仅使用用于训练的图像级标签来产生像素类预测。为此,以前的方法采用了通用管道:它们从类激活图(CAM)生成伪口罩,并使用此类掩码来监督分割网络。但是,由于凸轮的局部属性,即它们倾向于仅专注于小的判别对象零件,因此涵盖涵盖整个物体的全部范围的全面伪面罩是一项挑战。在本文中,我们将CAM的局部性与卷积神经网络(CNNS)的质地偏见特性相关联。因此,我们建议利用形状信息来补充质地偏见的CNN特征,从而鼓励掩模预测不仅是全面的,而且还与物体边界相交。我们通过一种新颖的改进方法进一步完善了在线方式的预测,该方法同时考虑了类和颜色亲和力,以生成可靠的伪口罩以监督模型。重要的是,我们的模型是在单阶段框架内进行端到端训练的,因此在培训成本方面有效。通过对Pascal VOC 2012的广泛实验,我们验证了方法在产生精确和形状对准的分割结果方面的有效性。具体而言,我们的模型超过了现有的最新单阶段方法。此外,当在没有铃铛和哨声的简单两阶段管道中采用时,它还在多阶段方法上实现了新的最新性能。
translated by 谷歌翻译
几次拍摄的语义分割旨在将新颖的类对象分段为仅具有少数标记的支持图像。大多数高级解决方案利用度量学习框架,通过将每个查询功能与学习的类特定的原型匹配来执行分段。然而,由于特征比较不完整,该框架遭受了偏见的分类。为了解决这个问题,我们通过引入类别特定的和类别不可知的原型来提出自适应原型表示,从而构建与查询功能学习语义对齐的完整样本对。互补特征学习方式有效地丰富了特征比较,并有助于在几次拍摄设置中产生一个非偏见的分段模型。它用双分支端到端网络(\即,特定于类分支和类别不可知分支)实现,它生成原型,然后组合查询特征以执行比较。此外,所提出的类别无神不可话的分支简单而且有效。在实践中,它可以自适应地为查询图像生成多种类别 - 不可知的原型,并以自我对比方式学习特征对齐。广泛的Pascal-5 $ ^ i $和Coco-20 $ ^ i $展示了我们方法的优越性。在不牺牲推理效率的费用中,我们的模型实现了最先进的,导致1-Shot和5-Shot Settings进行语义分割。
translated by 谷歌翻译
Image-level weakly supervised semantic segmentation is a challenging problem that has been deeply studied in recent years. Most of advanced solutions exploit class activation map (CAM). However, CAMs can hardly serve as the object mask due to the gap between full and weak supervisions. In this paper, we propose a self-supervised equivariant attention mechanism (SEAM) to discover additional supervision and narrow the gap. Our method is based on the observation that equivariance is an implicit constraint in fully supervised semantic segmentation, whose pixel-level labels take the same spatial transformation as the input images during data augmentation. However, this constraint is lost on the CAMs trained by image-level supervision. Therefore, we propose consistency regularization on predicted CAMs from various transformed images to provide self-supervision for network learning. Moreover, we propose a pixel correlation module (PCM), which exploits context appearance information and refines the prediction of current pixel by its similar neighbors, leading to further improvement on CAMs consistency. Extensive experiments on PASCAL VOC 2012 dataset demonstrate our method outperforms state-of-the-art methods using the same level of supervision. The code is released online 1 .
translated by 谷歌翻译
几次拍摄的语义分割解决了学习任务,其中只有几个具有地面真理像素级标签的图像可用于新颖的感兴趣的景点。通常需要将大量数据(即基类)收集具有这样的地面真理信息,然后是元学习策略来解决上述学习任务。当在训练和测试期间只能观察到图像级语义标签时,它被认为是弱监督少量语义细分的更具挑战性的任务。为了解决这个问题,我们提出了一种新的元学习框架,其预测来自有限量的数据和它们的语义标签的伪像素级分段掩模。更重要的是,我们的学习方案进一步利用了具有分段保证的查询图像输入的产生的像素级信息。因此,我们提出的学习模型可以被视为像素级元学习者。通过对基准数据集的广泛实验,我们表明我们的模型在完全监督的环境下实现了令人满意的性能,但在弱势监督的环境下对最先进的方法进行了有利的方法。
translated by 谷歌翻译
从非结构化的3D点云学习密集点语义,虽然是一个逼真的问题,但在文献中探讨了逼真的问题。虽然现有的弱监督方法可以仅具有小数点的点级注释来有效地学习语义,但我们发现香草边界箱级注释也是大规模3D点云的语义分割信息。在本文中,我们介绍了一个神经结构,称为Box2Seg,以了解3D点云的点级语义,具有边界盒级监控。我们方法的关键是通过探索每个边界框内和外部的几何和拓扑结构来生成准确的伪标签。具体地,利用基于注意的自我训练(AST)技术和点类激活映射(PCAM)来估计伪标签。通过伪标签进行进一步培训并精制网络。在两个大型基准测试中的实验,包括S3DIS和Scannet,证明了该方法的竞争性能。特别是,所提出的网络可以培训,甚至是均匀的空缺边界箱级注释和子环级标签。
translated by 谷歌翻译
现有的突出实例检测(SID)方法通常从像素级注释数据集中学习。在本文中,我们向SID问题提出了第一个弱监督的方法。虽然在一般显着性检测中考虑了弱监管,但它主要基于使用类标签进行对象本地化。然而,仅使用类标签来学习实例知识的显着性信息是不普遍的,因为标签可能不容易地分离具有高语义亲和力的显着实例。由于子化信息提供了对突出项的数量的即时判断,因此自然地与检测突出实例相关,并且可以帮助分离相同实例的不同部分的同一类别的单独实例。灵感来自这一观察,我们建议使用课程和镇展标签作为SID问题的弱监督。我们提出了一种具有三个分支的新型弱监管网络:显着性检测分支利用类一致性信息来定位候选物体;边界检测分支利用类差异信息来解除对象边界;和Firedroid检测分支,使用子化信息来检测SALICE实例质心。然后融合该互补信息以产生突出的实例图。为方便学习过程,我们进一步提出了一种渐进的培训方案,以减少标签噪声和模型中学到的相应噪声,通过往复式突出实例预测和模型刷新模型。我们广泛的评估表明,该方法对精心设计的基线方法进行了有利地竞争,这些方法适应了相关任务。
translated by 谷歌翻译