卷积神经网络(CNN)不仅被广泛普及,而且在包括图像分类,恢复和生成在内的许多应用中都取得了明显的结果。尽管卷积的重量共享特性使它们在各种任务中被广泛采用,但其内容不足的特征也可以视为主要缺点。为了解决这个问题,在本文中,我们提出了一个新型操作,称为Pixel自适应核(PAKA)。 Paka通过从可学习的功能中乘以空间变化的注意力来提供对滤波器重量的方向性。所提出的方法会沿通道和空间方向分别渗入像素自适应的注意图,以使用较少的参数来解决分解模型。我们的方法可以以端到端的方式训练,并且适用于任何基于CNN的模型。此外,我们建议使用PAKA改进的信息聚合模块,称为层次PAKA模块(HPM)。与常规信息聚合模块相比,我们通过在语义细分方面提出最先进的性能来证明HPM的优势。我们通过其他消融研究来验证提出的方法,并可视化PAKA的效果,从而为卷积的权重提供了方向性。我们还通过将其应用于多模式任务,尤其是颜色引导的深度图超分辨率来显示该方法的普遍性。
translated by 谷歌翻译
深度映射记录场景中的视点和对象之间的距离,这在许多真实应用程序中起着关键作用。然而,消费者级RGB-D相机捕获的深度图遭受了低空间分辨率。引导深度地图超分辨率(DSR)是解决此问题的流行方法,该方法试图从输入的低分辨率(LR)深度及其耦合的HR RGB图像中恢复高分辨率(HR)深度映射和作为指引。引导DSR最具挑战性的问题是如何正确选择一致的结构并传播它们,并正确处理不一致的结构。在本文中,我们提出了一种用于引导DSR的新型关注的分层多模态融合(AHMF)网络。具体地,为了有效地提取和组合来自LR深度和HR引导的相关信息,我们提出了一种基于多模态注意力的融合(MMAF)策略,包括分层卷积层,包括特征增强块,以选择有价值的功能和特征重新校准块来统一不同外观特征的方式的相似性度量。此外,我们提出了一个双向分层特征协作(BHFC)模块,以完全利用多尺度特征之间的低级空间信息和高级结构信息。实验结果表明,在重建精度,运行速度和记忆效率方面,我们的方法优于最先进的方法。
translated by 谷歌翻译
卷积神经网络在过去十年中允许在单个图像超分辨率(SISR)中的显着进展。在SISR最近的进展中,关注机制对于高性能SR模型至关重要。但是,注意机制仍然不清楚为什么它在SISR中的工作原理。在这项工作中,我们试图量化和可视化SISR中的注意力机制,并表明并非所有关注模块都同样有益。然后,我们提出了关注网络(A $ ^ 2 $ n)的注意力,以获得更高效和准确的SISR。具体来说,$ ^ 2 $ n包括非关注分支和耦合注意力分支。提出了一种动态注意力模块,为这两个分支产生权重,以动态地抑制不需要的注意力调整,其中权重根据输入特征自适应地改变。这允许注意模块专门从事惩罚的有益实例,从而大大提高了注意力网络的能力,即几个参数开销。实验结果表明,我们的最终模型A $ ^ 2 $ n可以实现与类似尺寸的最先进网络相比的卓越的权衡性能。代码可以在https://github.com/haoyuc/a2n获得。
translated by 谷歌翻译
引导过滤器是计算机视觉和计算机图形中的基本工具,旨在将结构信息从引导图像传输到目标图像。大多数现有方法构造来自指导本身的滤波器内核,而不考虑指导和目标之间的相互依赖性。然而,由于两种图像中通常存在显着不同的边沿,只需将引导的所有结构信息传送到目标即将导致各种伪像。要应对这个问题,我们提出了一个名为Deep Enterponal引导图像过滤的有效框架,其过滤过程可以完全集成两个图像中包含的互补信息。具体地,我们提出了一种注意力内核学习模块,分别从引导和目标生成双组滤波器内核,然后通过在两个图像之间建模像素方向依赖性来自适应地组合它们。同时,我们提出了一种多尺度引导图像滤波模块,以粗略的方式通过所构造的内核逐渐产生滤波结果。相应地,引入了多尺度融合策略以重用中间导点在粗略的过程中。广泛的实验表明,所提出的框架在广泛的引导图像滤波应用中,诸如引导超分辨率,横向模态恢复,纹理拆除和语义分割的最先进的方法。
translated by 谷歌翻译
联合超分辨率和反音调映射(SR-ITM)旨在提高具有分辨率和动态范围具有质量缺陷的视频的视觉质量。当使用4K高动态范围(HDR)电视来观看低分辨率标准动态范围(LR SDR)视频时,就会出现此问题。以前依赖于学习本地信息的方法通常在保留颜色合规性和远程结构相似性方面做得很好,从而导致了不自然的色彩过渡和纹理伪像。为了应对这些挑战,我们建议联合SR-ITM的全球先验指导的调制网络(GPGMNET)。特别是,我们设计了一个全球先验提取模块(GPEM),以提取颜色合规性和结构相似性,分别对ITM和SR任务有益。为了进一步利用全球先验并保留空间信息,我们使用一些用于中间特征调制的参数,设计多个全球先验的指导空间调制块(GSMB),其中调制参数由共享的全局先验和空间特征生成来自空间金字塔卷积块(SPCB)的地图。通过这些精心设计的设计,GPGMNET可以通过较低的计算复杂性实现更高的视觉质量。广泛的实验表明,我们提出的GPGMNET优于最新方法。具体而言,我们提出的模型在PSNR中超过了0.64 dB的最新模型,其中69 $ \%$ $ $较少,3.1 $ \ times $ speedup。该代码将很快发布。
translated by 谷歌翻译
现有的多尺度解决方案会导致仅增加接受场大小的风险,同时忽略小型接受场。因此,有效构建自适应神经网络以识别各种空间尺度对象是一个具有挑战性的问题。为了解决这个问题,我们首先引入一个新的注意力维度,即除了现有的注意力维度(例如渠道,空间和分支)之外,并提出了一个新颖的选择性深度注意网络,以对称地处理各种视觉中的多尺度对象任务。具体而言,在给定神经网络的每个阶段内的块,即重新连接,输出层次功能映射共享相同的分辨率但具有不同的接收场大小。基于此结构属性,我们设计了一个舞台建筑模块,即SDA,其中包括树干分支和类似SE的注意力分支。躯干分支的块输出融合在一起,以通过注意力分支指导其深度注意力分配。根据提出的注意机制,我们可以动态选择不同的深度特征,这有助于自适应调整可变大小输入对象的接收场大小。这样,跨块信息相互作用会导致沿深度方向的远距离依赖关系。与其他多尺度方法相比,我们的SDA方法结合了从以前的块到舞台输出的多个接受场,从而提供了更广泛,更丰富的有效接收场。此外,我们的方法可以用作其他多尺度网络以及注意力网络的可插入模块,并创造为SDA- $ x $ net。它们的组合进一步扩展了有效的接受场的范围,可以实现可解释的神经网络。我们的源代码可在\ url {https://github.com/qingbeiguo/sda-xnet.git}中获得。
translated by 谷歌翻译
随着深度学习的发展,单图像超分辨率(SISR)取得了重大突破。最近,已经提出了基于全局特征交互的SISR网络性能的方法。但是,需要动态地忽略对上下文的响应的神经元的功能。为了解决这个问题,我们提出了一个轻巧的交叉障碍性推理网络(CFIN),这是一个由卷积神经网络(CNN)和变压器组成的混合网络。具体而言,一种新型的交叉磁场导向变压器(CFGT)旨在通过使用调制卷积内核与局部代表性语义信息结合来自适应修改网络权重。此外,提出了基于CNN的跨尺度信息聚合模块(CIAM),以使模型更好地专注于潜在的实用信息并提高变压器阶段的效率。广泛的实验表明,我们提出的CFIN是一种轻巧有效的SISR模型,可以在计算成本和模型性能之间达到良好的平衡。
translated by 谷歌翻译
联合超分辨率和反音调映射(联合SR-ITM)旨在增加低分辨率和标准动态范围图像的分辨率和动态范围。重点方法主要是诉诸图像分解技术,使用多支化的网络体系结构。 ,这些方法采用的刚性分解在很大程度上将其力量限制在各种图像上。为了利用其潜在能力,在本文中,我们将分解机制从图像域概括为更广泛的特征域。为此,我们提出了一个轻巧的特征分解聚合网络(FDAN)。特别是,我们设计了一个功能分解块(FDB),可以实现功能细节和对比度的可学习分离。通过级联FDB,我们可以建立一个用于强大的多级特征分解的分层功能分解组。联合SR-ITM,\ ie,SRITM-4K的新基准数据集,该数据集是大规模的,为足够的模型培训和评估提供了多功能方案。两个基准数据集的实验结果表明,我们的FDAN表明我们的FDAN有效,并且胜过了以前的方法sr-itm.ar代码和数据集将公开发布。
translated by 谷歌翻译
现代的高性能语义分割方法采用沉重的主链和扩张的卷积来提取相关特征。尽管使用上下文和语义信息提取功能对于分割任务至关重要,但它为实时应用程序带来了内存足迹和高计算成本。本文提出了一种新模型,以实现实时道路场景语义细分的准确性/速度之间的权衡。具体来说,我们提出了一个名为“比例吸引的条带引导特征金字塔网络”(s \ textsuperscript {2} -fpn)的轻巧模型。我们的网络由三个主要模块组成:注意金字塔融合(APF)模块,比例吸引条带注意模块(SSAM)和全局特征Upsample(GFU)模块。 APF采用了注意力机制来学习判别性多尺度特征,并有助于缩小不同级别之间的语义差距。 APF使用量表感知的关注来用垂直剥离操作编码全局上下文,并建模长期依赖性,这有助于将像素与类似的语义标签相关联。此外,APF还采用频道重新加权块(CRB)来强调频道功能。最后,S \ TextSuperScript {2} -fpn的解码器然后采用GFU,该GFU用于融合APF和编码器的功能。已经对两个具有挑战性的语义分割基准进行了广泛的实验,这表明我们的方法通过不同的模型设置实现了更好的准确性/速度权衡。提出的模型已在CityScapes Dataset上实现了76.2 \%miou/87.3fps,77.4 \%miou/67fps和77.8 \%miou/30.5fps,以及69.6 \%miou,71.0 miou,71.0 \%miou,和74.2 \%\%\%\%\%\%。 miou在Camvid数据集上。这项工作的代码将在\ url {https://github.com/mohamedac29/s2-fpn提供。
translated by 谷歌翻译
编码器 - 解码器模型已广泛用于RGBD语义分割,并且大多数通过双流网络设计。通常,共同推理RGBD的颜色和几何信息是有益的对语义分割。然而,大多数现有方法都无法全面地利用编码器和解码器中的多模式信息。在本文中,我们提出了一种用于RGBD语义细分的新型关注的双重监督解码器。在编码器中,我们设计一个简单但有效的关注的多模式融合模块,以提取和保险丝深度多级成对的互补信息。要了解更强大的深度表示和丰富的多模态信息,我们介绍了一个双分支解码器,以有效利用不同任务的相关性和互补线。在Nyudv2和Sun-RGBD数据集上的广泛实验表明,我们的方法达到了最先进的方法的卓越性能。
translated by 谷歌翻译
Informative features play a crucial role in the single image super-resolution task. Channel attention has been demonstrated to be effective for preserving information-rich features in each layer. However, channel attention treats each convolution layer as a separate process that misses the correlation among different layers. To address this problem, we propose a new holistic attention network (HAN), which consists of a layer attention module (LAM) and a channel-spatial attention module (CSAM), to model the holistic interdependencies among layers, channels, and positions. Specifically, the proposed LAM adaptively emphasizes hierarchical features by considering correlations among layers. Meanwhile, CSAM learns the confidence at all the positions of each channel to selectively capture more informative features. Extensive experiments demonstrate that the proposed HAN performs favorably against the state-ofthe-art single image super-resolution approaches.
translated by 谷歌翻译
This paper tackles the problem of motion deblurring of dynamic scenes. Although end-to-end fully convolutional designs have recently advanced the state-of-the-art in nonuniform motion deblurring, their performance-complexity trade-off is still sub-optimal. Existing approaches achieve a large receptive field by increasing the number of generic convolution layers and kernel-size, but this comes at the expense of of the increase in model size and inference speed. In this work, we propose an efficient pixel adaptive and feature attentive design for handling large blur variations across different spatial locations and process each test image adaptively. We also propose an effective content-aware global-local filtering module that significantly improves performance by considering not only global dependencies but also by dynamically exploiting neighboring pixel information. We use a patch-hierarchical attentive architecture composed of the above module that implicitly discovers the spatial variations in the blur present in the input image and in turn, performs local and global modulation of intermediate features. Extensive qualitative and quantitative comparisons with prior art on deblurring benchmarks demonstrate that our design offers significant improvements over the state-of-the-art in accuracy as well as speed.
translated by 谷歌翻译
Semantic image segmentation is a basic street scene understanding task in autonomous driving, where each pixel in a high resolution image is categorized into a set of semantic labels. Unlike other scenarios, objects in autonomous driving scene exhibit very large scale changes, which poses great challenges for high-level feature representation in a sense that multi-scale information must be correctly encoded. To remedy this problem, atrous convolution [14] was introduced to generate features with larger receptive fields without sacrificing spatial resolution. Built upon atrous convolution, Atrous Spatial Pyramid Pooling (ASPP) [2] was proposed to concatenate multiple atrous-convolved features using different dilation rates into a final feature representation. Although ASPP is able to generate multi-scale features, we argue the feature resolution in the scale-axis is not dense enough for the autonomous driving scenario. To this end, we propose Densely connected Atrous Spatial Pyramid Pooling (DenseASPP), which connects a set of atrous convolutional layers in a dense way, such that it generates multi-scale features that not only cover a larger scale range, but also cover that scale range densely, without significantly increasing the model size. We evaluate DenseASPP on the street scene benchmark Cityscapes [4] and achieve state-of-the-art performance.
translated by 谷歌翻译
Contextual information is vital in visual understanding problems, such as semantic segmentation and object detection. We propose a Criss-Cross Network (CCNet) for obtaining full-image contextual information in a very effective and efficient way. Concretely, for each pixel, a novel criss-cross attention module harvests the contextual information of all the pixels on its criss-cross path. By taking a further recurrent operation, each pixel can finally capture the full-image dependencies. Besides, a category consistent loss is proposed to enforce the criss-cross attention module to produce more discriminative features. Overall, CCNet is with the following merits: 1) GPU memory friendly. Compared with the non-local block, the proposed recurrent criss-cross attention module requires 11× less GPU memory usage. 2) High computational efficiency. The recurrent criss-cross attention significantly reduces FLOPs by about 85% of the non-local block. 3) The state-of-the-art performance. We conduct extensive experiments on semantic segmentation benchmarks including Cityscapes, ADE20K, human parsing benchmark LIP, instance segmentation benchmark COCO, video segmentation benchmark CamVid. In particular, our CCNet achieves the mIoU scores of 81.9%, 45.76% and 55.47% on the Cityscapes test set, the ADE20K validation set and the LIP validation set respectively, which are the new state-of-the-art results. The source codes are available at https://github.com/speedinghzl/CCNet.
translated by 谷歌翻译
As a powerful engine, vanilla convolution has promoted huge breakthroughs in various computer tasks. However, it often suffers from sample and content agnostic problems, which limits the representation capacities of the convolutional neural networks (CNNs). In this paper, we for the first time model the scene features as a combination of the local spatial-adaptive parts owned by the individual and the global shift-invariant parts shared to all individuals, and then propose a novel two-branch dual complementary dynamic convolution (DCDC) operator to flexibly deal with these two types of features. The DCDC operator overcomes the limitations of vanilla convolution and most existing dynamic convolutions who capture only spatial-adaptive features, and thus markedly boosts the representation capacities of CNNs. Experiments show that the DCDC operator based ResNets (DCDC-ResNets) significantly outperform vanilla ResNets and most state-of-the-art dynamic convolutional networks on image classification, as well as downstream tasks including object detection, instance and panoptic segmentation tasks, while with lower FLOPs and parameters.
translated by 谷歌翻译
Depth map super-resolution (DSR) has been a fundamental task for 3D computer vision. While arbitrary scale DSR is a more realistic setting in this scenario, previous approaches predominantly suffer from the issue of inefficient real-numbered scale upsampling. To explicitly address this issue, we propose a novel continuous depth representation for DSR. The heart of this representation is our proposed Geometric Spatial Aggregator (GSA), which exploits a distance field modulated by arbitrarily upsampled target gridding, through which the geometric information is explicitly introduced into feature aggregation and target generation. Furthermore, bricking with GSA, we present a transformer-style backbone named GeoDSR, which possesses a principled way to construct the functional mapping between local coordinates and the high-resolution output results, empowering our model with the advantage of arbitrary shape transformation ready to help diverse zooming demand. Extensive experimental results on standard depth map benchmarks, e.g., NYU v2, have demonstrated that the proposed framework achieves significant restoration gain in arbitrary scale depth map super-resolution compared with the prior art. Our codes are available at https://github.com/nana01219/GeoDSR.
translated by 谷歌翻译
人类自然有效地在复杂的场景中找到突出区域。通过这种观察的动机,引入了计算机视觉中的注意力机制,目的是模仿人类视觉系统的这一方面。这种注意机制可以基于输入图像的特征被视为动态权重调整过程。注意机制在许多视觉任务中取得了巨大的成功,包括图像分类,对象检测,语义分割,视频理解,图像生成,3D视觉,多模态任务和自我监督的学习。在本调查中,我们对计算机愿景中的各种关注机制进行了全面的审查,并根据渠道注意,空间关注,暂时关注和分支注意力进行分类。相关的存储库https://github.com/menghaoguo/awesome-vision-tions致力于收集相关的工作。我们还建议了未来的注意机制研究方向。
translated by 谷歌翻译
由于从输入方面互补的方式,RGB-D语义细分引发了研究的兴趣。现有作品通常采用两流体系结构,该体系结构并行处理光度法和几何信息,很少有方法明确利用深度线索的贡献来调整RGB图像上的采样位置。在本文中,我们提出了一个新颖的框架,以将深度信息纳入RGB卷积神经网络(CNN),称为Z-ACN(深度适应的CNN)。具体而言,我们的Z-ACN生成了一个2D适应的偏移量,该偏移完全受到低级功能的约束,以指导RGB图像上的特征提取。通过生成的偏移,我们引入了两个直观有效的操作,以取代基本的CNN操作员:深度适应的卷积和深度适应的平均池。对室内和室外语义分割任务的广泛实验证明了我们方法的有效性。
translated by 谷歌翻译
最近,基于深度学习的超分辨率方法取得了良好的性能,但主要关注通过喂养许多样品来训练单个广义的深网络。但是直观地,每个图像都具有其表示,并且预计将获得自适应模型。对于此问题,我们通过利用图像或特征的全局上下文信息来提出一种新颖的图像特异性卷积核调制(IKM),以产生适当地调制卷积核的注意重量,这越优于Vanilla卷积和几个现有的注意机制在没有任何其他参数的情况下嵌入最先进的架构。特别是,为了优化我们在迷你批量培训中的IKM,我们引入了一种特定于图像的优化(ISO)算法,比传统的迷你批量SGD优化更有效。此外,我们调查IKM对最先进的架构的影响,并利用一个带有U风格的残差学习和沙漏密集的块学习的新骨干,术语U-HOLGLASS密集网络(U-HDN),这是一个理论上和实验,最大限度地提高IKM的效力。单图像超分辨率的广泛实验表明,该方法实现了优异的现有方法性能。代码可在github.com/yuanfeihuang/ikm获得。
translated by 谷歌翻译
语义分割是自主车辆了解周围场景的关键技术。当代模型的吸引力表现通常以牺牲重计算和冗长的推理时间为代价,这对于自行车来说是无法忍受的。在低分辨率图像上使用轻量级架构(编码器 - 解码器或双路)或推理,最近的方法实现了非常快的场景解析,即使在单个1080TI GPU上以100多件FPS运行。然而,这些实时方法与基于扩张骨架的模型之间的性能仍有显着差距。为了解决这个问题,我们提出了一家专门为实时语义细分设计的高效底座。所提出的深层双分辨率网络(DDRNET)由两个深部分支组成,之间进行多个双边融合。此外,我们设计了一个名为Deep聚合金字塔池(DAPPM)的新上下文信息提取器,以基于低分辨率特征映射放大有效的接收字段和熔丝多尺度上下文。我们的方法在城市景观和Camvid数据集上的准确性和速度之间实现了新的最先进的权衡。特别是,在单一的2080Ti GPU上,DDRNET-23-Slim在Camvid测试组上的Citycapes试验组102 FPS上的102 FPS,74.7%Miou。通过广泛使用的测试增强,我们的方法优于最先进的模型,需要计算得多。 CODES和培训的型号在线提供。
translated by 谷歌翻译