在所需的姿势中绘制人物的图像是动漫制作中必不可少但费力的任务。在本文中,我们介绍了协作神经渲染〜(CONR)方法,以从字符表中可用的一些任意摆姿势的参考图像中创建新图像。通常,动漫人物的身体形状的高度多样性违反了像SMPL这样的现实世界人体的普遍身体模型的利用。为了克服这个困难,Conr使用紧凑且易于攻击的地标编码,以避免在管道中创建统一的紫外线映射。此外,使用特征空间跨视图密集的对应关系和翘曲在特殊设计的神经网络构建体中使用多个参考图像时,Conr的性能可以显着提高。此外,我们收集了一个字符表数据集,该数据集包含700,000多个手绘和合成的姿势图像,以促进该领域的研究。
translated by 谷歌翻译
本文报告了我们针对多媒体VICO 2022对话式头部生成挑战的解决方案,该挑战旨在根据音频和参考图像生成生动的面对面对话视频。我们的解决方案专注于使用正则化并组装高视觉质量渲染器的广义音频对手驱动器。我们仔细调整了行为的音频模型,并使用我们的前后背景融合模块进行后制作视频。我们在官方排名中的Talking Head Generation Track中获得了聆听校长曲目的第一名。我们的代码将发布。
translated by 谷歌翻译
许多代表性图形神经网络,例如GPR-GNN和CHEBNET,具有曲线图谱滤波器的图形卷曲。但是,现有的工作要么应用预定义的滤波器权重,或者没有必要的约束来学习它们,这可能导致过度简化或不良滤波器。为了克服这些问题,我们提出了一种具有理论支持的新型图形神经网络的Bernnet,提供了一种简单但有效的设计和学习任意曲线图谱滤波器的方案。特别是,对于在图形的标准化Laplacian谱上的任何过滤器上,我们的Bernnet通过命令估计它是一个订单 - $ k $伯尔尼斯坦多项式近似,并通过设置伯尔尼斯坦的系数来设计其光谱特性。此外,我们可以基于观察的图形及其相关信号学习系数(和相应的滤波器权重),从而实现专门用于数据的BERNNET。我们的实验表明,Bernnet可以学习任意光谱滤波器,包括复杂的带抑制和梳状滤波器,并且它在真实的图形建模任务中实现了卓越的性能。代码可在https://github.com/ivam-he/bernnet上获得。
translated by 谷歌翻译
尽管近期图形神经网络(GNN)成功,但常见的架构通常表现出显着的限制,包括对过天飞机,远程依赖性和杂散边缘的敏感性,例如,由于图形异常或对抗性攻击。至少部分地解决了一个简单的透明框架内的这些问题,我们考虑了一个新的GNN层系列,旨在模仿和整合两个经典迭代算法的更新规则,即近端梯度下降和迭代重复最小二乘(IRLS)。前者定义了一个可扩展的基础GNN架构,其免受过性的,而仍然可以通过允许任意传播步骤捕获远程依赖性。相反,后者产生了一种新颖的注意机制,该注意机制被明确地锚定到底层端到端能量函数,以及相对于边缘不确定性的稳定性。当结合时,我们获得了一个非常简单而强大的模型,我们在包括标准化基准,与异常扰动的图形,具有异化的图形和涉及远程依赖性的图形的不同方案的极其简单而强大的模型。在此过程中,我们与已明确为各个任务设计的SOTA GNN方法进行比较,实现竞争或卓越的节点分类准确性。我们的代码可以在https://github.com/fftyyy/twirls获得。
translated by 谷歌翻译
我们提出了一种用于视频帧插值(VFI)的实时中流估计算法。许多最近的基于流的VFI方法首先估计双向光学流,然后缩放并将它们倒转到近似中间流动,导致运动边界上的伪像。RIFE使用名为IFNET的神经网络,可以直接估计中间流量从粗细流,速度更好。我们设计了一种用于训练中间流动模型的特权蒸馏方案,这导致了大的性能改善。Rife不依赖于预先训练的光流模型,可以支持任意时间的帧插值。实验表明,普里埃雷在若干公共基准上实现了最先进的表现。\ url {https://github.com/hzwer/arxiv2020-rife}。
translated by 谷歌翻译
Graph convolutional networks (GCNs) are a powerful deep learning approach for graph-structured data. Recently, GCNs and subsequent variants have shown superior performance in various application areas on real-world datasets. Despite their success, most of the current GCN models are shallow, due to the over-smoothing problem.In this paper, we study the problem of designing and analyzing deep graph convolutional networks. We propose the GCNII, an extension of the vanilla GCN model with two simple yet effective techniques: Initial residual and Identity mapping. We provide theoretical and empirical evidence that the two techniques effectively relieves the problem of over-smoothing. Our experiments show that the deep GCNII model outperforms the state-of-the-art methods on various semi-and fullsupervised tasks. Code is available at https: //github.com/chennnM/GCNII.
translated by 谷歌翻译
Recent advances on deep learning models come at the price of formidable training cost. The increasing model size is one of the root cause, but another less-emphasized fact is that data scale is actually increasing at a similar speed as model scale, and the training cost is proportional to both of them. Compared to the rapidly evolving model architecture, how to efficiently use the training data (especially for the expensive foundation model pertaining) is both less explored and difficult to realize due to the lack of a convenient framework that focus on data efficiency capabilities. To this end, we present DeepSpeed Data Efficiency library, a framework that makes better use of data, increases training efficiency, and improves model quality. Specifically, it provides efficient data sampling via curriculum learning, and efficient data routing via random layerwise token dropping. DeepSpeed Data Efficiency takes extensibility, flexibility and composability into consideration, so that users can easily utilize the framework to compose multiple techniques and apply customized strategies. By applying our solution to GPT-3 1.3B and BERT-Large language model pretraining, we can achieve similar model quality with up to 2x less data and 2x less time, or achieve better model quality under similar amount of data and time.
translated by 谷歌翻译
The meaning of a slang term can vary in different communities. However, slang semantic variation is not well understood and under-explored in the natural language processing of slang. One existing view argues that slang semantic variation is driven by culture-dependent communicative needs. An alternative view focuses on slang's social functions suggesting that the desire to foster semantic distinction may have led to the historical emergence of community-specific slang senses. We explore these theories using computational models and test them against historical slang dictionary entries, with a focus on characterizing regularity in the geographical variation of slang usages attested in the US and the UK over the past two centuries. We show that our models are able to predict the regional identity of emerging slang word meanings from historical slang records. We offer empirical evidence that both communicative need and semantic distinction play a role in the variation of slang meaning yet their relative importance fluctuates over the course of history. Our work offers an opportunity for incorporating historical cultural elements into the natural language processing of slang.
translated by 谷歌翻译
图形神经网络(GNN)是具有无核数据的应用的有前途的方法。但是,具有数亿节点的大规模图上的培训GNN既是资源又是耗时的。与DNN不同,GNN通常具有更大的内存足迹,因此GPU内存能力和PCIE带宽是GNN培训中的主要资源瓶颈。为了解决此问题,我们提出分叉:一种图形量化方法,通过显着减少内存足迹和PCIE带宽要求来加速GNN训练,以便GNN可以充分利用GPU计算功能。我们的关键见解是,与DNN不同,GNN不太容易发生量化引起的输入特征的信息丢失。我们确定图形特征量化中的主要准确性影响因素,从理论上证明,分叉训练会收敛到网络,在该网络中,损失在未压缩网络的最佳损失的$ \ epsilon $之内。我们使用几种流行的GNN模型和数据集对分叉进行了广泛的评估,包括最大的公共图数据集MAG240M上的图形。结果表明,分叉达到30以上的压缩率,并在边际准确性损失的情况下提高了GNN训练速度200%-320%。特别是,分叉在一小时内仅使用四个GPU在MAG240M上的训练图来实现记录。
translated by 谷歌翻译
Designing spectral convolutional networks is a challenging problem in graph learning. ChebNet, one of the early attempts, approximates the spectral graph convolutions using Chebyshev polynomials. GCN simplifies ChebNet by utilizing only the first two Chebyshev polynomials while still outperforming it on real-world datasets. GPR-GNN and BernNet demonstrate that the Monomial and Bernstein bases also outperform the Chebyshev basis in terms of learning the spectral graph convolutions. Such conclusions are counter-intuitive in the field of approximation theory, where it is established that the Chebyshev polynomial achieves the optimum convergent rate for approximating a function. In this paper, we revisit the problem of approximating the spectral graph convolutions with Chebyshev polynomials. We show that ChebNet's inferior performance is primarily due to illegal coefficients learnt by ChebNet approximating analytic filter functions, which leads to over-fitting. We then propose ChebNetII, a new GNN model based on Chebyshev interpolation, which enhances the original Chebyshev polynomial approximation while reducing the Runge phenomenon. We conducted an extensive experimental study to demonstrate that ChebNetII can learn arbitrary graph convolutions and achieve superior performance in both full- and semi-supervised node classification tasks. Most notably, we scale ChebNetII to a billion graph ogbn-papers100M, showing that spectral-based GNNs have superior performance. Our code is available at https://github.com/ivam-he/ChebNetII.
translated by 谷歌翻译