The surrogate loss of variational autoencoders (VAEs) poses various challenges to their training, inducing the imbalance between task fitting and representation inference. To avert this, the existing strategies for VAEs focus on adjusting the tradeoff by introducing hyperparameters, deriving a tighter bound under some mild assumptions, or decomposing the loss components per certain neural settings. VAEs still suffer from uncertain tradeoff learning.We propose a novel evolutionary variational autoencoder (eVAE) building on the variational information bottleneck (VIB) theory and integrative evolutionary neural learning. eVAE integrates a variational genetic algorithm into VAE with variational evolutionary operators including variational mutation, crossover, and evolution. Its inner-outer-joint training mechanism synergistically and dynamically generates and updates the uncertain tradeoff learning in the evidence lower bound (ELBO) without additional constraints. Apart from learning a lossy compression and representation of data under the VIB assumption, eVAE presents an evolutionary paradigm to tune critical factors of VAEs and deep neural networks and addresses the premature convergence and random search problem by integrating evolutionary optimization into deep learning. Experiments show that eVAE addresses the KL-vanishing problem for text generation with low reconstruction loss, generates all disentangled factors with sharp images, and improves the image generation quality,respectively. eVAE achieves better reconstruction loss, disentanglement, and generation-inference balance than its competitors.
translated by 谷歌翻译
需要高质量的面部图像来保证在监视和安全场景中自动识别系统(FR)系统的稳定性和可靠性。但是,由于传输或存储的限制,在分析之前,通常会压缩大量的面部数据。压缩图像可能会失去强大的身份信息,从而导致FR系统的性能降低。在此,我们首次尝试研究FR系统的明显差异(JND),可以将其定义为FR系统无法注意到的最大失真。更具体地说,我们建立了一个JND数据集,其中包括3530个原始图像和137,670个由高级参考编码/解码软件生成的压缩图像,该图像基于多功能视频编码(VVC)标准(VTM-15.0)。随后,我们开发了一种新型的JND预测模型,以直接推断FR系统的JND图像。特别是,为了最大程度地删除冗余性,在不损害鲁棒身份信息的情况下,我们将编码器应用于多个功能提取和基于注意力的特征分解模块,以将面部特征逐渐分解为两个不相关的组件,即身份和残差特征,通过自我 - 监督学习。然后,剩余特征被馈入解码器以生成残差图。最后,通过从原始图像中减去残差图来获得预测的JND映射。实验结果表明,与最先进的JND模型相比,所提出的模型可以实现JND MAP预测的更高准确性,并且能够在维持FR系统的性能的同时保存更多的位置,而与VTM-15.0相比。
translated by 谷歌翻译
在本文中,提出了一种基于高动态范围(HDR)图像的频率差异的新颖有效的图像质量评估(IQA)算法,称为基于局部全球频率特征模型(LGFM)。由假设人类视觉系统高度适应于在感知视觉场景时提取结构信息和部分频率的动机,Gabor和Butterworth滤镜分别用于HDR图像的亮度,分别提取本地和全局频率特征。相似性测量和特征池在频率特征上依次执行,以获得预测的质量评分。在四个广泛使用的基准上评估的实验表明,与最先进的HDR IQA方法相比,所提出的LGFM可以提供更高的主观感知一致性。我们的代码可在:\ url {https://github.com/eezkni/lgfm}中获得。
translated by 谷歌翻译
摆脱拟合配对训练数据的基本限制,最近无监督的低光增强方法在调整图像的照明和对比度方面表现出色。但是,对于无监督的低光增强,由于缺乏对详细信号的监督而导致的剩余噪声抑制问题在很大程度上阻碍了这些方法在现实世界应用中的广泛部署。在本文中,我们提出了一种新型的自行车相互作用生成对抗网络(CIGAN),以实现无监督的低光图像增强,它不仅能够更好地在低/正常光图像之间更好地传输照明分布,还可以操纵两个域之间的详细信号,例如。 ,在环状增强/降解过程中抑制/合成逼真的噪声。特别是,提出的低光引导转换馈送馈送从增强gan(Egan)发电机的低光图像的特征到降解GAN(DGAN)的发生器。借助真正的弱光图像的信息,DGAN可以在低光图像中综合更逼真的不同照明和对比度。此外,DGAN中的特征随机扰动模块学会了增加特征随机性以产生各种特征分布,从而说服了合成的低光图像以包含逼真的噪声。广泛的实验既证明了所提出的方法的优越性,又证明了每个模块在CIGAN中的有效性。
translated by 谷歌翻译
卷积神经网络(CNNS)成功地进行了压缩图像感测。然而,由于局部性和重量共享的归纳偏差,卷积操作证明了建模远程依赖性的内在限制。变压器,最初作为序列到序列模型设计,在捕获由于基于自我关注的架构而捕获的全局背景中,即使它可以配备有限的本地化能力。本文提出了一种混合框架,一个混合框架,其集成了从CNN提供的借用的优点以及变压器提供的全局上下文,以获得增强的表示学习。所提出的方法是由自适应采样和恢复组成的端到端压缩图像感测方法。在采样模块中,通过学习的采样矩阵测量图像逐块。在重建阶段,将测量投射到双杆中。一个是用于通过卷积建模邻域关系的CNN杆,另一个是用于采用全球自我关注机制的变压器杆。双分支结构是并发,并且本地特征和全局表示在不同的分辨率下融合,以最大化功能的互补性。此外,我们探索一个渐进的战略和基于窗口的变压器块,以降低参数和计算复杂性。实验结果表明了基于专用变压器的架构进行压缩感测的有效性,与不同数据集的最先进方法相比,实现了卓越的性能。
translated by 谷歌翻译
A recent study has shown a phenomenon called neural collapse in that the within-class means of features and the classifier weight vectors converge to the vertices of a simplex equiangular tight frame at the terminal phase of training for classification. In this paper, we explore the corresponding structures of the last-layer feature centers and classifiers in semantic segmentation. Based on our empirical and theoretical analysis, we point out that semantic segmentation naturally brings contextual correlation and imbalanced distribution among classes, which breaks the equiangular and maximally separated structure of neural collapse for both feature centers and classifiers. However, such a symmetric structure is beneficial to discrimination for the minor classes. To preserve these advantages, we introduce a regularizer on feature centers to encourage the network to learn features closer to the appealing structure in imbalanced semantic segmentation. Experimental results show that our method can bring significant improvements on both 2D and 3D semantic segmentation benchmarks. Moreover, our method ranks 1st and sets a new record (+6.8% mIoU) on the ScanNet200 test leaderboard. Code will be available at https://github.com/dvlab-research/Imbalanced-Learning.
translated by 谷歌翻译
Weakly-supervised object localization aims to indicate the category as well as the scope of an object in an image given only the image-level labels. Most of the existing works are based on Class Activation Mapping (CAM) and endeavor to enlarge the discriminative area inside the activation map to perceive the whole object, yet ignore the co-occurrence confounder of the object and context (e.g., fish and water), which makes the model inspection hard to distinguish object boundaries. Besides, the use of CAM also brings a dilemma problem that the classification and localization always suffer from a performance gap and can not reach their highest accuracy simultaneously. In this paper, we propose a casual knowledge distillation method, dubbed KD-CI-CAM, to address these two under-explored issues in one go. More specifically, we tackle the co-occurrence context confounder problem via causal intervention (CI), which explores the causalities among image features, contexts, and categories to eliminate the biased object-context entanglement in the class activation maps. Based on the de-biased object feature, we additionally propose a multi-teacher causal distillation framework to balance the absorption of classification knowledge and localization knowledge during model training. Extensive experiments on several benchmarks demonstrate the effectiveness of KD-CI-CAM in learning clear object boundaries from confounding contexts and addressing the dilemma problem between classification and localization performance.
translated by 谷歌翻译
Witnessing the impressive achievements of pre-training techniques on large-scale data in the field of computer vision and natural language processing, we wonder whether this idea could be adapted in a grab-and-go spirit, and mitigate the sample inefficiency problem for visuomotor driving. Given the highly dynamic and variant nature of the input, the visuomotor driving task inherently lacks view and translation invariance, and the visual input contains massive irrelevant information for decision making, resulting in predominant pre-training approaches from general vision less suitable for the autonomous driving task. To this end, we propose PPGeo (Policy Pre-training via Geometric modeling), an intuitive and straightforward fully self-supervised framework curated for the policy pretraining in visuomotor driving. We aim at learning policy representations as a powerful abstraction by modeling 3D geometric scenes on large-scale unlabeled and uncalibrated YouTube driving videos. The proposed PPGeo is performed in two stages to support effective self-supervised training. In the first stage, the geometric modeling framework generates pose and depth predictions simultaneously, with two consecutive frames as input. In the second stage, the visual encoder learns driving policy representation by predicting the future ego-motion and optimizing with the photometric error based on current visual observation only. As such, the pre-trained visual encoder is equipped with rich driving policy related representations and thereby competent for multiple visuomotor driving tasks. Extensive experiments covering a wide span of challenging scenarios have demonstrated the superiority of our proposed approach, where improvements range from 2% to even over 100% with very limited data. Code and models will be available at https://github.com/OpenDriveLab/PPGeo.
translated by 谷歌翻译
In this work, we focus on instance-level open vocabulary segmentation, intending to expand a segmenter for instance-wise novel categories without mask annotations. We investigate a simple yet effective framework with the help of image captions, focusing on exploiting thousands of object nouns in captions to discover instances of novel classes. Rather than adopting pretrained caption models or using massive caption datasets with complex pipelines, we propose an end-to-end solution from two aspects: caption grounding and caption generation. In particular, we devise a joint Caption Grounding and Generation (CGG) framework based on a Mask Transformer baseline. The framework has a novel grounding loss that performs explicit and implicit multi-modal feature alignments. We further design a lightweight caption generation head to allow for additional caption supervision. We find that grounding and generation complement each other, significantly enhancing the segmentation performance for novel categories. We conduct extensive experiments on the COCO dataset with two settings: Open Vocabulary Instance Segmentation (OVIS) and Open Set Panoptic Segmentation (OSPS). The results demonstrate the superiority of our CGG framework over previous OVIS methods, achieving a large improvement of 6.8% mAP on novel classes without extra caption data. Our method also achieves over 15% PQ improvements for novel classes on the OSPS benchmark under various settings.
translated by 谷歌翻译
Nearest-Neighbor (NN) classification has been proven as a simple and effective approach for few-shot learning. The query data can be classified efficiently by finding the nearest support class based on features extracted by pretrained deep models. However, NN-based methods are sensitive to the data distribution and may produce false prediction if the samples in the support set happen to lie around the distribution boundary of different classes. To solve this issue, we present P3DC-Shot, an improved nearest-neighbor based few-shot classification method empowered by prior-driven data calibration. Inspired by the distribution calibration technique which utilizes the distribution or statistics of the base classes to calibrate the data for few-shot tasks, we propose a novel discrete data calibration operation which is more suitable for NN-based few-shot classification. Specifically, we treat the prototypes representing each base class as priors and calibrate each support data based on its similarity to different base prototypes. Then, we perform NN classification using these discretely calibrated support data. Results from extensive experiments on various datasets show our efficient non-learning based method can outperform or at least comparable to SOTA methods which need additional learning steps.
translated by 谷歌翻译