逆文本归一化(ITN)用于将自动语音识别(ASR)系统的口语输出转换为书面形式。传统手工制作的ITN规则可以复杂地转录和维护。同时,神经建模方法需要与ASR系统相同或相似的域(内域数据)中的质量大规模口语写作示例。这两种方法都需要昂贵且复杂的注释。在本文中,我们提出了一种数据增强技术,该技术可有效地从室外文本数据中产生丰富的口语写入数字对,并以最少的人类注释。我们从经验上证明,使用我们的数据增强技术训练的ITN模型始终超过ITN模型,该模型仅使用14.44%的总体准确性,仅在所有数字表面(例如红衣主教,货币和分数)上使用内域数据进行训练。
translated by 谷歌翻译
We propose a distributionally robust return-risk model for Markov decision processes (MDPs) under risk and reward ambiguity. The proposed model optimizes the weighted average of mean and percentile performances, and it covers the distributionally robust MDPs and the distributionally robust chance-constrained MDPs (both under reward ambiguity) as special cases. By considering that the unknown reward distribution lies in a Wasserstein ambiguity set, we derive the tractable reformulation for our model. In particular, we show that that the return-risk model can also account for risk from uncertain transition kernel when one only seeks deterministic policies, and that a distributionally robust MDP under the percentile criterion can be reformulated as its nominal counterpart at an adjusted risk level. A scalable first-order algorithm is designed to solve large-scale problems, and we demonstrate the advantages of our proposed model and algorithm through numerical experiments.
translated by 谷歌翻译
Forecasts by the European Centre for Medium-Range Weather Forecasts (ECMWF; EC for short) can provide a basis for the establishment of maritime-disaster warning systems, but they contain some systematic biases.The fifth-generation EC atmospheric reanalysis (ERA5) data have high accuracy, but are delayed by about 5 days. To overcome this issue, a spatiotemporal deep-learning method could be used for nonlinear mapping between EC and ERA5 data, which would improve the quality of EC wind forecast data in real time. In this study, we developed the Multi-Task-Double Encoder Trajectory Gated Recurrent Unit (MT-DETrajGRU) model, which uses an improved double-encoder forecaster architecture to model the spatiotemporal sequence of the U and V components of the wind field; we designed a multi-task learning loss function to correct wind speed and wind direction simultaneously using only one model. The study area was the western North Pacific (WNP), and real-time rolling bias corrections were made for 10-day wind-field forecasts released by the EC between December 2020 and November 2021, divided into four seasons. Compared with the original EC forecasts, after correction using the MT-DETrajGRU model the wind speed and wind direction biases in the four seasons were reduced by 8-11% and 9-14%, respectively. In addition, the proposed method modelled the data uniformly under different weather conditions. The correction performance under normal and typhoon conditions was comparable, indicating that the data-driven mode constructed here is robust and generalizable.
translated by 谷歌翻译
We study the composition style in deep image matting, a notion that characterizes a data generation flow on how to exploit limited foregrounds and random backgrounds to form a training dataset. Prior art executes this flow in a completely random manner by simply going through the foreground pool or by optionally combining two foregrounds before foreground-background composition. In this work, we first show that naive foreground combination can be problematic and therefore derive an alternative formulation to reasonably combine foregrounds. Our second contribution is an observation that matting performance can benefit from a certain occurrence frequency of combined foregrounds and their associated source foregrounds during training. Inspired by this, we introduce a novel composition style that binds the source and combined foregrounds in a definite triplet. In addition, we also find that different orders of foreground combination lead to different foreground patterns, which further inspires a quadruplet-based composition style. Results under controlled experiments on four matting baselines show that our composition styles outperform existing ones and invite consistent performance improvement on both composited and real-world datasets. Code is available at: https://github.com/coconuthust/composition_styles
translated by 谷歌翻译
Despite a sea of interpretability methods that can produce plausible explanations, the field has also empirically seen many failure cases of such methods. In light of these results, it remains unclear for practitioners how to use these methods and choose between them in a principled way. In this paper, we show that for even moderately rich model classes (easily satisfied by neural networks), any feature attribution method that is complete and linear--for example, Integrated Gradients and SHAP--can provably fail to improve on random guessing for inferring model behaviour. Our results apply to common end-tasks such as identifying local model behaviour, spurious feature identification, and algorithmic recourse. One takeaway from our work is the importance of concretely defining end-tasks. In particular, we show that once such an end-task is defined, a simple and direct approach of repeated model evaluations can outperform many other complex feature attribution methods.
translated by 谷歌翻译
Are large language models (LLMs) like GPT-3 psychologically safe? In this work, we design unbiased prompts to evaluate LLMs systematically from a psychological perspective. Firstly, we test the personality traits of three different LLMs with Short Dark Triad (SD-3) and Big Five Inventory (BFI). We find all of them show higher scores on SD-3 than the human average, indicating a relatively darker personality. Furthermore, LLMs like InstructGPT and FLAN-T5, which are fine-tuned with safety metrics, do not necessarily have more positive personalities. They score higher on Machiavellianism and Narcissism than GPT-3. Secondly, we test the LLMs in GPT-3 series on well-being tests to study the impact of fine-tuning with more training data. Interestingly, we observe a continuous increase in well-being scores from GPT-3 to InstructGPT. Following the observations, we show that instruction-finetune FLAN-T5 with positive answers in BFI can effectively improve the model from a psychological perspective. Finally, we call on the community to evaluate and improve LLMs' safety systematically instead of at the sentence level only.
translated by 谷歌翻译
Visual language such as charts and plots is ubiquitous in the human world. Comprehending plots and charts requires strong reasoning skills. Prior state-of-the-art (SOTA) models require at least tens of thousands of training examples and their reasoning capabilities are still much limited, especially on complex human-written queries. This paper presents the first one-shot solution to visual language reasoning. We decompose the challenge of visual language reasoning into two steps: (1) plot-to-text translation, and (2) reasoning over the translated text. The key in this method is a modality conversion module, named as DePlot, which translates the image of a plot or chart to a linearized table. The output of DePlot can then be directly used to prompt a pretrained large language model (LLM), exploiting the few-shot reasoning capabilities of LLMs. To obtain DePlot, we standardize the plot-to-table task by establishing unified task formats and metrics, and train DePlot end-to-end on this task. DePlot can then be used off-the-shelf together with LLMs in a plug-and-play fashion. Compared with a SOTA model finetuned on more than >28k data points, DePlot+LLM with just one-shot prompting achieves a 24.0% improvement over finetuned SOTA on human-written queries from the task of chart QA.
translated by 谷歌翻译
Robust Markov decision processes (RMDPs) are promising models that provide reliable policies under ambiguities in model parameters. As opposed to nominal Markov decision processes (MDPs), however, the state-of-the-art solution methods for RMDPs are limited to value-based methods, such as value iteration and policy iteration. This paper proposes Double-Loop Robust Policy Gradient (DRPG), the first generic policy gradient method for RMDPs with a global convergence guarantee in tabular problems. Unlike value-based methods, DRPG does not rely on dynamic programming techniques. In particular, the inner-loop robust policy evaluation problem is solved via projected gradient descent. Finally, our experimental results demonstrate the performance of our algorithm and verify our theoretical guarantees.
translated by 谷歌翻译
Visual language data such as plots, charts, and infographics are ubiquitous in the human world. However, state-of-the-art vision-language models do not perform well on these data. We propose MatCha (Math reasoning and Chart derendering pretraining) to enhance visual language models' capabilities in jointly modeling charts/plots and language data. Specifically, we propose several pretraining tasks that cover plot deconstruction and numerical reasoning which are the key capabilities in visual language modeling. We perform the MatCha pretraining starting from Pix2Struct, a recently proposed image-to-text visual language model. On standard benchmarks such as PlotQA and ChartQA, the MatCha model outperforms state-of-the-art methods by as much as nearly 20%. We also examine how well MatCha pretraining transfers to domains such as screenshots, textbook diagrams, and document figures and observe overall improvement, verifying the usefulness of MatCha pretraining on broader visual language tasks.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译