半监督的对象检测在平均教师驱动的自我训练的发展中取得了重大进展。尽管结果有令人鼓舞,但在先前的工作中尚未完全探索标签不匹配问题,从而导致自训练期间严重确认偏见。在本文中,我们从两个不同但互补的角度(即分布级别和实例级别)提出了一个简单而有效的标签框架。对于前者,根据Monte Carlo采样,可以合理地近似来自标记数据的未标记数据的类分布。在这种弱监督提示的指导下,我们引入了一个重新分配卑鄙的老师,该老师利用自适应标签 - 分布意识到的信心阈值来生成无偏见的伪标签来推动学生学习。对于后一个,存在着跨教师模型的被忽视的标签分配歧义问题。为了解决这个问题,我们提出了一种新的标签分配机制,用于自我训练框架,即提案自我分配,该机制将学生的建议注入教师,并生成准确的伪标签,以相应地匹配学生模型中的每个建议。 MS-Coco和Pascal-VOC数据集的实验证明了我们提出的框架与其他最先进的框架相当优越。代码将在https://github.com/hikvision-research/ssod上找到。
translated by 谷歌翻译
In this paper, we propose a novel technique, namely INVALIDATOR, to automatically assess the correctness of APR-generated patches via semantic and syntactic reasoning. INVALIDATOR reasons about program semantic via program invariants while it also captures program syntax via language semantic learned from large code corpus using the pre-trained language model. Given a buggy program and the developer-patched program, INVALIDATOR infers likely invariants on both programs. Then, INVALIDATOR determines that a APR-generated patch overfits if: (1) it violates correct specifications or (2) maintains errors behaviors of the original buggy program. In case our approach fails to determine an overfitting patch based on invariants, INVALIDATOR utilizes a trained model from labeled patches to assess patch correctness based on program syntax. The benefit of INVALIDATOR is three-fold. First, INVALIDATOR is able to leverage both semantic and syntactic reasoning to enhance its discriminant capability. Second, INVALIDATOR does not require new test cases to be generated but instead only relies on the current test suite and uses invariant inference to generalize the behaviors of a program. Third, INVALIDATOR is fully automated. We have conducted our experiments on a dataset of 885 patches generated on real-world programs in Defects4J. Experiment results show that INVALIDATOR correctly classified 79% overfitting patches, accounting for 23% more overfitting patches being detected by the best baseline. INVALIDATOR also substantially outperforms the best baselines by 14% and 19% in terms of Accuracy and F-Measure, respectively.
translated by 谷歌翻译
Fine-grained classification and counting of bone marrow erythroid cells are vital for evaluating the health status and formulating therapeutic schedules for leukemia or hematopathy. Due to the subtle visual differences between different types of erythroid cells, it is challenging to apply existing image-based deep learning models for fine-grained erythroid cell classification. Moreover, there is no large open-source datasets on erythroid cells to support the model training. In this paper, we introduce BMEC (Bone Morrow Erythroid Cells), the first large fine-grained image dataset of erythroid cells, to facilitate more deep learning research on erythroid cells. BMEC contains 5,666 images of individual erythroid cells, each of which is extracted from the bone marrow erythroid cell smears and professionally annotated to one of the four types of erythroid cells. To distinguish the erythroid cells, one key indicator is the cell shape which is closely related to the cell growth and maturation. Therefore, we design a novel shape-aware image classification network for fine-grained erythroid cell classification. The shape feature is extracted from the shape mask image and aggregated to the raw image feature with a shape attention module. With the shape-attended image feature, our network achieved superior classification performance (81.12\% top-1 accuracy) on the BMEC dataset comparing to the baseline methods. Ablation studies also demonstrate the effectiveness of incorporating the shape information for the fine-grained cell classification. To further verify the generalizability of our method, we tested our network on two additional public white blood cells (WBC) datasets and the results show our shape-aware method can generally outperform recent state-of-the-art works on classifying the WBC. The code and BMEC dataset can be found on https://github.com/wangye8899/BMEC.
translated by 谷歌翻译
In recent years, graph representation learning has achieved remarkable success while suffering from low-quality data problems. As a mature technology to improve data quality in computer vision, data augmentation has also attracted increasing attention in graph domain. For promoting the development of this emerging research direction, in this survey, we comprehensively review and summarize the existing graph data augmentation (GDAug) techniques. Specifically, we first summarize a variety of feasible taxonomies, and then classify existing GDAug studies based on fine-grained graph elements. Furthermore, for each type of GDAug technique, we formalize the general definition, discuss the technical details, and give schematic illustration. In addition, we also summarize common performance metrics and specific design metrics for constructing a GDAug evaluation system. Finally, we summarize the applications of GDAug from both data and model levels, as well as future directions.
translated by 谷歌翻译
Speech-centric machine learning systems have revolutionized many leading domains ranging from transportation and healthcare to education and defense, profoundly changing how people live, work, and interact with each other. However, recent studies have demonstrated that many speech-centric ML systems may need to be considered more trustworthy for broader deployment. Specifically, concerns over privacy breaches, discriminating performance, and vulnerability to adversarial attacks have all been discovered in ML research fields. In order to address the above challenges and risks, a significant number of efforts have been made to ensure these ML systems are trustworthy, especially private, safe, and fair. In this paper, we conduct the first comprehensive survey on speech-centric trustworthy ML topics related to privacy, safety, and fairness. In addition to serving as a summary report for the research community, we point out several promising future research directions to inspire the researchers who wish to explore further in this area.
translated by 谷歌翻译
Recently, evolutionary multitasking (EMT) has been successfully used in the field of high-dimensional classification. However, the generation of multiple tasks in the existing EMT-based feature selection (FS) methods is relatively simple, using only the Relief-F method to collect related features with similar importance into one task, which cannot provide more diversified tasks for knowledge transfer. Thus, this paper devises a new EMT algorithm for FS in high-dimensional classification, which first adopts different filtering methods to produce multiple tasks and then modifies a competitive swarm optimizer to efficiently solve these related tasks via knowledge transfer. First, a diversified multiple task generation method is designed based on multiple filtering methods, which generates several relevant low-dimensional FS tasks by eliminating irrelevant features. In this way, useful knowledge for solving simple and relevant tasks can be transferred to simplify and speed up the solution of the original high-dimensional FS task. Then, a competitive swarm optimizer is modified to simultaneously solve these relevant FS tasks by transferring useful knowledge among them. Numerous empirical results demonstrate that the proposed EMT-based FS method can obtain a better feature subset than several state-of-the-art FS methods on eighteen high-dimensional datasets.
translated by 谷歌翻译
Instead of mining coherent topics from a given text corpus in a completely unsupervised manner, seed-guided topic discovery methods leverage user-provided seed words to extract distinctive and coherent topics so that the mined topics can better cater to the user's interest. To model the semantic correlation between words and seeds for discovering topic-indicative terms, existing seed-guided approaches utilize different types of context signals, such as document-level word co-occurrences, sliding window-based local contexts, and generic linguistic knowledge brought by pre-trained language models. In this work, we analyze and show empirically that each type of context information has its value and limitation in modeling word semantics under seed guidance, but combining three types of contexts (i.e., word embeddings learned from local contexts, pre-trained language model representations obtained from general-domain training, and topic-indicative sentences retrieved based on seed information) allows them to complement each other for discovering quality topics. We propose an iterative framework, SeedTopicMine, which jointly learns from the three types of contexts and gradually fuses their context signals via an ensemble ranking process. Under various sets of seeds and on multiple datasets, SeedTopicMine consistently yields more coherent and accurate topics than existing seed-guided topic discovery approaches.
translated by 谷歌翻译
Spatio-temporal modeling as a canonical task of multivariate time series forecasting has been a significant research topic in AI community. To address the underlying heterogeneity and non-stationarity implied in the graph streams, in this study, we propose Spatio-Temporal Meta-Graph Learning as a novel Graph Structure Learning mechanism on spatio-temporal data. Specifically, we implement this idea into Meta-Graph Convolutional Recurrent Network (MegaCRN) by plugging the Meta-Graph Learner powered by a Meta-Node Bank into GCRN encoder-decoder. We conduct a comprehensive evaluation on two benchmark datasets (METR-LA and PEMS-BAY) and a large-scale spatio-temporal dataset that contains a variaty of non-stationary phenomena. Our model outperformed the state-of-the-arts to a large degree on all three datasets (over 27% MAE and 34% RMSE). Besides, through a series of qualitative evaluations, we demonstrate that our model can explicitly disentangle locations and time slots with different patterns and be robustly adaptive to different anomalous situations. Codes and datasets are available at https://github.com/deepkashiwa20/MegaCRN.
translated by 谷歌翻译
Accurate spatial-temporal traffic flow forecasting is essential for helping traffic managers to take control measures and drivers to choose the optimal travel routes. Recently, graph convolutional networks (GCNs) have been widely used in traffic flow prediction owing to their powerful ability to capture spatial-temporal dependencies. The design of the spatial-temporal graph adjacency matrix is a key to the success of GCNs, and it is still an open question. This paper proposes reconstructing the binary adjacency matrix via tensor decomposition, and a traffic flow forecasting method is proposed. First, we reformulate the spatial-temporal fusion graph adjacency matrix into a three-way adjacency tensor. Then, we reconstructed the adjacency tensor via Tucker decomposition, wherein more informative and global spatial-temporal dependencies are encoded. Finally, a Spatial-temporal Synchronous Graph Convolutional module for localized spatial-temporal correlations learning and a Dilated Convolution module for global correlations learning are assembled to aggregate and learn the comprehensive spatial-temporal dependencies of the road network. Experimental results on four open-access datasets demonstrate that the proposed model outperforms state-of-the-art approaches in terms of the prediction performance and computational cost.
translated by 谷歌翻译
To date, little attention has been given to multi-view 3D human mesh estimation, despite real-life applicability (e.g., motion capture, sport analysis) and robustness to single-view ambiguities. Existing solutions typically suffer from poor generalization performance to new settings, largely due to the limited diversity of image-mesh pairs in multi-view training data. To address this shortcoming, people have explored the use of synthetic images. But besides the usual impact of visual gap between rendered and target data, synthetic-data-driven multi-view estimators also suffer from overfitting to the camera viewpoint distribution sampled during training which usually differs from real-world distributions. Tackling both challenges, we propose a novel simulation-based training pipeline for multi-view human mesh recovery, which (a) relies on intermediate 2D representations which are more robust to synthetic-to-real domain gap; (b) leverages learnable calibration and triangulation to adapt to more diversified camera setups; and (c) progressively aggregates multi-view information in a canonical 3D space to remove ambiguities in 2D representations. Through extensive benchmarking, we demonstrate the superiority of the proposed solution especially for unseen in-the-wild scenarios.
translated by 谷歌翻译