本文提出了一种有效且新颖的多重深度强化学习(MADRL)的方法,用于解决联合虚拟网络功能(VNF)的位置和路由(P&R),其中同时提供了具有差异性要求的多个服务请求。服务请求的差异要求反映出其延迟和成本敏感的因素。我们首先构建了VNF P&R问题,以共同减少NP完整的服务延迟和资源消耗成本的加权总和。然后,将关节VNF P&R问题分解为两个迭代子任务:放置子任务和路由子任务。每个子任务由多个并发并行顺序决策过程组成。通过调用深层确定性策略梯度方法和多代理技术,MADRL-P&R框架旨在执行两个子任务。提出了新的联合奖励和内部奖励机制,以匹配安置和路由子任务的目标和约束。我们还提出了基于参数迁移的模型重新训练方法来处理不断变化的网络拓扑。通过实验证实,提议的MADRL-P&R框架在服务成本和延迟方面优于其替代方案,并为个性化服务需求提供了更高的灵活性。基于参数迁移的模型重新训练方法可以在中等网络拓扑变化下有效加速收敛。
translated by 谷歌翻译
由生物学进化的动机,本文通过类比与经过验证的实践进化算法(EA)相比,解释了视觉变压器的合理性,并得出了两者都具有一致的数学表述。然后,我们受到有效的EA变体的启发,我们提出了一个新型的金字塔饮食式主链,该主链仅包含拟议的\ emph {ea-ea-lase transformer}(eat)块,该块由三个残留零件组成,\ ie,\ emph {多尺度区域聚集}(msra),\ emph {global and local互动}(GLI)和\ emph {feed-forward Network}(ffn)模块,以分别建模多尺度,交互和个人信息。此外,我们设计了一个与变压器骨架对接的\ emph {与任务相关的头}(TRH),以更灵活地完成最终信息融合,并\ emph {reviv} a \ emph {调制变形MSA}(MD-MSA),以动态模型模型位置。关于图像分类,下游任务和解释性实验的大量定量和定量实验证明了我们方法比最新方法(SOTA)方法的有效性和优越性。 \例如,我们的手机(1.8m),微小(6.1m),小(24.3m)和基地(49.0m)型号达到了69.4、78.4、83.1和83.9的83.9 TOP-1仅在Imagenet-1 K上接受NAIVE训练的TOP-1食谱; Eatformer微型/小型/基本武装面具-R-CNN获得45.4/47.4/49.0盒AP和41.4/42.9/44.2掩膜可可检测,超过当代MPVIT-T,SWIN-T,SWIN-T和SWIN-S,而SWIN-S则是0.6/ 1.4/0.5盒AP和0.4/1.3/0.9掩码AP分别使用较少的拖鞋;我们的Eatformer-small/base在Upernet上获得了47.3/49.3 MIOU,超过Swin-T/S超过2.8/1.7。代码将在\ url {https://https://github.com/zhangzjn/eatformer}上提供。
translated by 谷歌翻译
仅国家模仿学习的最新进展将模仿学习的适用性扩展到现实世界中的范围,从而减轻了观察专家行动的需求。但是,现有的解决方案只学会从数据中提取州对行动映射策略,而无需考虑专家如何计划到目标。这阻碍了利用示威游行并限制政策的灵活性的能力。在本文中,我们介绍了解耦政策优化(DEPO),该策略优化(DEPO)明确将策略脱离为高级状态计划者和逆动力学模型。借助嵌入式的脱钩策略梯度和生成对抗训练,DEPO可以将知识转移到不同的动作空间或状态过渡动态,并可以将规划师推广到无示威的状态区域。我们的深入实验分析表明,DEPO在学习最佳模仿性能的同时学习通用目标状态计划者的有效性。我们证明了DEPO通过预训练跨任务转移的吸引力,以及与各种技能共同培训的潜力。
translated by 谷歌翻译
Multiconer共享的任务旨在检测在多种语言的简短和低文本设置中,在语义上模棱两可且复杂的命名实体。缺乏上下文使人们对歧义的命名实体的认识充满挑战。为了减轻此问题,我们的团队Damo-NLP提出了一个基于知识的系统,我们在其中建立了基于Wikipedia的多语言知识基础,以向指定的实体识别(NER)模型提供相关的上下文信息。给定输入句子,我们的系统有效地从知识库中检索了相关上下文。然后,将原始输入句子加强此类上下文信息,从而可以捕获明显更好的上下文化令牌表示。我们的系统在Multiconer共享任务中赢得了13个曲目中的10个。
translated by 谷歌翻译
自然语言界面(NLIS)为用户提供了一种方便的方式来通过自然语言查询交互分析数据。然而,交互式数据分析是一种苛刻的过程,特别是对于新手数据分析师。从不同域探索大型和复杂的数据集时,数据分析师不一定有足够的关于数据和应用域的知识。它使他们无法有效地引起一系列查询并广泛导出理想的数据洞察力。在本文中,我们使用Step-Wise查询推荐模块开发NLI,以帮助用户选择适当的下一步探索操作。该系统采用数据驱动方法,以基于其查询日志生成用户兴趣的应用域的逐步语义相关和上下文感知的查询建议。此外,该系统可帮助用户将查询历史和结果组织成仪表板以传达发现的数据洞察力。通过比较用户学习,我们表明我们的系统可以促进比没有推荐模块的基线更有效和系统的数据分析过程。
translated by 谷歌翻译
在恢复低分辨率灰度图像的实际应用中,我们通常需要为目标设备运行三个单独的图像着色,超分辨率和Dows采样操作。但是,该管道对于独立进程是冗余的并且低效,并且可以共享一些内部特征。因此,我们提出了一种有效的范例来执行{s} {s} {c} olorization和{s} Uper分辨率(SCS),并提出了端到端的SCSNet来实现这一目标。该方法由两部分组成:用于学习颜色信息的彩色分支,用于采用所提出的即插即用\ EMPH {金字塔阀跨关注}(PVCATTN)模块来聚合源和参考图像之间的特征映射;和超分辨率分支集成颜色和纹理信息以预测使用设计的\ emph {连续像素映射}(CPM)模块的目标图像来预测连续放大率的高分辨率图像。此外,我们的SCSNet支持对实际应用更灵活的自动和参照模式。丰富的实验证明了我们通过最先进的方法生成真实图像的方法的优越性,例如,平均降低了1.8 $ \ Depararrow $和5.1 $ \ Downarrow $相比,与自动和参照模式的最佳分数相比,分别在拥有更少的参数(超过$ \ \倍$ 2 $ \ dovearrow $)和更快的运行速度(超过$ \ times $ 3 $ \ Uprarow $)。
translated by 谷歌翻译
心肌活力的评估对于患有心肌梗塞的患者的诊断和治疗管理是必不可少的,并且心肌病理学的分类是本评估的关键。这项工作定义了医学图像分析的新任务,即进行心肌病理分割(MYOPS)结合三个序列的心脏磁共振(CMR)图像,该图像首次与Mycai 2020一起在Myops挑战中提出的。挑战提供了45个配对和预对准的CMR图像,允许算法将互补信息与三个CMR序列组合到病理分割。在本文中,我们提供了挑战的详细信息,从十五个参与者的作品调查,并根据五个方面解释他们的方法,即预处理,数据增强,学习策略,模型架构和后处理。此外,我们对不同因素的结果分析了结果,以检查关键障碍和探索解决方案的潜力,以及为未来的研究提供基准。我们得出结论,虽然报告了有前途的结果,但研究仍处于早期阶段,在成功应用于诊所之前需要更深入的探索。请注意,MyOPS数据和评估工具继续通过其主页(www.sdspeople.fudan.edu.cn/zhuangxiahai/0/myops20 /)注册注册。
translated by 谷歌翻译
少量样本压缩旨在将大冗余模型压缩成一个小型紧凑型,只有少量样品。如果我们的微调模型直接具有这些限制的样本,模型将容易受到过度装备,并且几乎没有学习。因此,先前的方法优化压缩模型逐层,并尝试使每个层具有与教师模型中的相应层相同的输出,这是麻烦的。在本文中,我们提出了一个名为mimicking的新框架,然后替换(mir),以实现几个样本压缩,这首先促使修剪模型输出与教师在倒数第二层中的相同功能,然后在倒数第二个之前替换教师的图层调整良好的紧凑型。与以前的层面重建方法不同,我们的MIR完全优化整个网络,这不仅简单而有效,而且还无人驾驶和一般。MIR优于以前的余量。代码即将推出。
translated by 谷歌翻译
尽管在广泛的愿景任务中取得了诱人的成功,但变形金刚尚未在高分辨率图像生成建模中作为Convnets的讨论能力。在本文中,我们寻求探索使用纯变压器来构建用于高分辨率图像合成的生成对抗网络。为此,我们认为,当地的关注是在计算效率和建模能力之间取得平衡至关重要。因此,所提出的发电机采用基于风格的架构中的Swin变压器。为了实现更大的接收领域,我们提出了双重关注,同时利用本地和移位窗的上下文,从而提高了发电质量。此外,我们表明提供了在基于窗口的变压器中丢失的绝对位置的知识极大地利益了代理。所提出的STYLESWIN可扩展到高分辨率,粗糙几何和细结构都受益于变压器的强效力。然而,在高分辨率合成期间发生阻塞伪像,因为以块明智的方式执行局部注意力可能会破坏空间一致性。为了解决这一点,我们经验研究了各种解决方案,其中我们发现采用小波鉴别器来检查光谱差异的措施有效地抑制伪影。广泛的实验表明了对现有的基于变压器的GAN的优越性,特别是在高分辨率上,例如高分辨率,例如1024x1024。如果没有复杂的培训策略,则在Celeba-HQ 1024上赢得了STYLEGAN,并且在FFHQ-1024上实现了对PAR的表现,证明了使用变压器进行高分辨率图像生成的承诺。代码和模型将在https://github.com/microsoft/styleswin上使用。
translated by 谷歌翻译
联合优化(FedOpt),在大量分布式客户端协作培训学习模型的目标是对联邦学习的重要性。 Fedopt的主要问题可归因于模型分歧和通信效率,这显着影响了性能。在本文中,我们提出了一种新方法,即Losac,更有效地从异构分布式数据中学习。它的关键算法洞察力是在{每个}常规本地模型更新之后本地更新全局全梯度的估计。因此,Losac可以使客户的信息以更紧凑的方式刷新。特别是,我们研究了Losac的收敛结果。此外,Losac的奖金是能够从最近的技术泄漏梯度(DLG)中捍卫信息泄漏。最后,实验已经验证了与最先进的FedOpt算法比较Losac的优越性。具体而言,Losac平均超过100美元的价格提高了通信效率,减轻了模型分歧问题,并配备了对抗DLG的防御能力。
translated by 谷歌翻译