Deep Neural Networks (DNNs) have been ubiquitously adopted in internet of things and are becoming an integral of our daily life. When tackling the evolving learning tasks in real world, such as classifying different types of objects, DNNs face the challenge to continually retrain themselves according to the tasks on different edge devices. Federated continual learning is a promising technique that offers partial solutions but yet to overcome the following difficulties: the significant accuracy loss due to the limited on-device processing, the negative knowledge transfer caused by the limited communication of non-IID data, and the limited scalability on the tasks and edge devices. In this paper, we propose FedKNOW, an accurate and scalable federated continual learning framework, via a novel concept of signature task knowledge. FedKNOW is a client side solution that continuously extracts and integrates the knowledge of signature tasks which are highly influenced by the current task. Each client of FedKNOW is composed of a knowledge extractor, a gradient restorer and, most importantly, a gradient integrator. Upon training for a new task, the gradient integrator ensures the prevention of catastrophic forgetting and mitigation of negative knowledge transfer by effectively combining signature tasks identified from the past local tasks and other clients' current tasks through the global model. We implement FedKNOW in PyTorch and extensively evaluate it against state-of-the-art techniques using popular federated continual learning benchmarks. Extensive evaluation results on heterogeneous edge devices show that FedKNOW improves model accuracy by 63.24% without increasing model training time, reduces communication cost by 34.28%, and achieves more improvements under difficult scenarios such as large numbers of tasks or clients, and training different complex networks.
translated by 谷歌翻译
从点云中检测3D对象是一项实用但充满挑战的任务,最近引起了越来越多的关注。在本文中,我们提出了针对3D对象检测的标签引导辅助训练方法(LG3D),该方法是增强现有3D对象检测器的功能学习的辅助网络。具体而言,我们提出了两个新型模块:一个标签 - 通道诱导器,该模块诱导器将框架中的注释和点云映射到特定于任务的表示形式和一个标签 - 知识式插曲器,该标签知识映射器有助于获得原始特征以获得检测临界表示。提出的辅助网络被推理丢弃,因此在测试时间没有额外的计算成本。我们对室内和室外数据集进行了广泛的实验,以验证我们的方法的有效性。例如,我们拟议的LG3D分别在SUN RGB-D和SCANNETV2数据集上将投票人员分别提高了2.5%和3.1%的地图。
translated by 谷歌翻译
基于注册的Atlas Building经常在高维图像空间中造成计算挑战。在本文中,我们介绍了一种新的混合地图集建筑算法,该算法快速估计来自大规模图像数据集的图表,计算成本大大降低。与先前的方法相比,迭代地在估计的地图集和单个图像之间执行注册任务,我们建议使用从预先训练的神经网络的登记的学习前沿。这种新开发的混合框架具有(i)提供了一种有效的Atlas建筑工程,而不会失去结果的质量,以及(ii)在利用各种深度学习的注册方法提供灵活性。我们展示了这一提出模型对3D脑磁共振成像(MRI)扫描的有效性。
translated by 谷歌翻译